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Abstract

VLIW architectures use very wide instruction words
in conjunction with high bandwidth to the instruc-
tion cache to achieve multiple instruction issue. One
instruction fetch mechanism for VLIWs is the use
of a banked instruction cache. Such a cache is in-
tended for use with a compressed instruction encod-
ing. A compressed encoding supports variable length
VLIWs and thus has associated with it the di�cul-
ties in supporting variable length instructions. One
of these is determining on every cycle the instruction
fetch address (NextPC) for the following cycle. This
report uses the TINKER experimental testbed to il-
lustrate a mechanism that can be used by a banked
instruction cache for NextPC computation. An algo-
rithm for NextPC computation is outlined and asso-
ciated hardware support is presented. Issues relating
to the cycle time complexity of the proposed design
are also addressed.

1 Introduction

VLIW architectures use very wide instruction words
to achieve multiple instruction issue. These archi-
tectures require high bandwidth instruction fetch (i-
fetch) mechanisms to transport instruction words
from the cache to the execution pipeline. The com-
plexity of the hardware support required for i-fetch
is related to the type of instruction encoding used.
In general, VLIW instructions are horizontally en-
coded wide words that issue a wide instruction word
on every clock cycle to function units (FUs) in the
machine. Two classes of encodings for VLIWs are
uncompressed and compressed encodings. In an un-
compressed encoding, NOP operations are explicitly

stored in the instruction word; the VLIW instruction
stores a NOP in the operation slot for a particular FU
if this FU is not scheduled to execute an operation
in that instruction word. An uncompressed encod-
ing implies that all instructions are of a �xed length,
which can simplify the instruction fetch hardware but
at the expense of poor memory utilization.

On the other hand, compressed encodings do not
store NOPs. Only operations for the FUs that will
execute an operation are included in the instruction
word. NOPs are e�ectively compressed out of the in-
struction word. VLIWs encoded with a compressed
encoding are variably sized. This type of encoding
has a higher memory utilization and allows greater
e�ective memory bandwidth than an uncompressed
encoding. A compressed encoding also aids in object{
code compatibility for VLIWs, such as in the dynamic
rescheduling algorithm that has been proposed in the
TINKER VLIW testbed [1]. A drawback is that such
an encoding requires more complicated instruction
fetch to handle the variable length instructions.

Research has been performed to investigate the in-
struction fetch requirements of VLIWs that use com-
pressed encodings [2]. One of the i-fetch mechanisms
that has been proposed is a banked instruction cache.
As alluded to previously, a compressed encoding re-
quires hardware support to fetch the variably-sized
instructions, support that is not needed to fetch the
the �xed size instructions of a VLIW that uses an
uncompressed encoding. One of the issues is deter-
mining the fetch address for the next clock cycle while
fetching a (variably sized) instruction in the current
cycle. This can be referred to as NextPC computa-
tion. This report outlines an algorithm for NextPC
computation for a banked instruction cache. Hard-
ware support for the algorithm is presented and im-
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plementation issues are also addressed.

2 Instruction Fetch Mecha-

nisms and Related work

2.1 Instruction Fetch Mechanisms

Memory/L2 cache

Miss-repair logic

‘‘Block Fetch’’

Tag compare, Valid select & NextPC computation

Expander

Execution pipeline

Expander

Expander 
must be used
on either
cache hit or
cache miss
path.

Figure 1: The basic instruction fetch model. All of
the necessary stages for i-fetch for a compressed en-
coding are shown.
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Figure 2: An integer add Op in the TINKER encod-
ing.

A simpli�ed instruction fetch model is shown in Fig-
ure 1. The solid lower borders in the diagram indicate
pipeline latches that delineate the various stages of
the fetch pipeline. The main blocks in this model
are the miss-repair logic, the pipelined instruction
cache, and the expander. The miss-repair logic han-
dles cache miss repair requests, and could be imple-
mented as a pipelined interface to the next level in the
memory hierarchy. Inside the instruction cache, each
cache block holds one or more VLIW instructions.
This is dependent on the instruction fetch mecha-
nism (for the purposes of this report, assume that

each block can hold multiple VLIWs). The cache is
pipelined and consists of a \block fetch" stage that se-
lects and fetches a cache block when presented with
an address, and a \tag compare & valid select" stage
that performs tag comparisons in parallel with select-
ing the Ops in the block that belong to the requested
VLIW instruction. The expander stage is responsi-
ble for routing Ops to the FUs on which they are to
be executed. Routing is necessary because the place-
ment of Ops within a MultiOp is somewhat arbitrary
when using a compressed encoding (for details, refer
to Conte et al. [2]).

The TINKER compressed instruction encoding is
used for this study [3]. TINKER is a VLIW encoding
that combines individual operations (Ops) that can
be issued in parallel into a unit of parallel issue called
a MultiOp. A TINKER Op is a PlayDoh instruction
that is 64 bits in length [4]. A TINKER Op can
execute on one of four types of functional units (FU-
Type): integer (integer computation and predicate
handling), memory (loads and stores), FP (oating
point add/mul/div/convert) and branch. The TIN-
KER encoding uses header and tail bits within an Op
to delineate the beginning and end of a MultiOp i.e.,
the �rst Op in a MultiOp has its header bit set, and
the last Op in a MultiOp has its tail bit set. For a n
issue machine (TINKER-n), the maximum MultiOp
size is n�64 bits. A maximum-sizedMultiOp contains
an Op for each functional unit in the machine.

2.2 Related Work

Only two classes of encodings { uncompressed and
compressed { have been introduced so far. Other
classes of encodings can also be used for VLIW ar-
chitectures, such as a frame encoding [5], split encod-
ing [6], [7], and a packet encoding [8], among others.
The more germane issue for this report is work re-
lated to instruction fetch mechanisms, particularly
those that deal with variably sized instructions and
NextPC computation. A review of the issue might
help to illustrate the (potential) problem. One step
of i-fetch is NextPC generation, during which a PC is
generated for the subsequent i-cache access. NextPC
generation for an encoding that supports �xed size
instructions (such as an uncompressed encoding) con-
sists of adding a constant (the size of the �xed instruc-
tion) to the PC and using the new quantity (NextPC)
to address the i-cache in the next cycle. Architectures
that use variable length instructions (such as an ar-
chitecture that uses a compressed encoding) have to
�rst determine the length of the current instruction
being fetched to determine what quantity to add to
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the PC to get NextPC.

Much of the related work in instruction fetch mech-
anisms has concentrated on superscalar or CISC ar-
chitectures, especially in the arena of x86 architec-
tures. Smotherman and Franklin adapted the �ll
unit and decoded instruction cache originally pro-
posed by Patt et al. for use in decoding x86 instruc-
tions [9], [10]. Their design associates a NextPC �eld
with each cache block, so that the NextPC is imme-
diately available and does not need to be computed
with every cache access. High performance CISC
processors implement di�erent solutions for fetching
variable length instructions. The Intel Pentium Pro
processor employs a multi-stage i-fetch that fetches
16 bytes per cycle from the i-cache and then uses
three stages to align the instructions [11]. NextPC
is PC+16 in the absence of a branch instruction.
The AMD K5 stores decode information related to
instruction length in the L1 instruction cache which
is later used for NextPC computation in the i-fetch
stage [12]. Like the Pentium Pro, the K5 uses mul-
tiple stages to fetch and align an x86 instruction
stream. The Nx86 processor design from NextGen
uses a di�erent approach for NextPC generation. It
has dedicated logic that performs instruction align-
ment at fetch time to compute NextPC [13]. In the
arena of RISC architectures, the CRISP processor
used a decoded instruction cache to assist in the de-
coding of instructions [14]. CRISP instructions were
converted from their in{memory format of 16 to 80
bits to a 192 bit expanded form in the i-cache. Each
expanded instruction occupied a cache block by itself
and had associated with it a NextPC �eld.

3 An overview of the Banked

Cache

Figure 3 shows the organization of the instruction
fetch mechanism when using the banked cache. The
cache is organized as two data and tag arrays, as in
the Intel Pentium processor [15]. The cache block size
is the same as the machine width n and the maximum
size of a MultiOp is n Ops. MultiOps are stored in
a compressed fashion in the cache. A MultiOp can
span two cache blocks. For this reason, on every clock
cycle, two cache blocks are accessed: the block in
which the requested MultiOp could reside (the cur-

rent block) and the next sequential block (successor
block). MultiOp expansion is done on every cache
access by an expander stage that is located between
the cache and the execution pipeline (this is called a

Scan Op hdr & tail
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Swap blocks
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Figure 3: Instruction fetch for a MultiOp in the
banked cache design. A fetch for MultiOp C is
shown. Blocks from both banks are fetched and then
swapped before being passed to the single-cycle ex-
pander. NextPC computation is done using o�set
and bank bits and is performed in parallel with cache
access.

hit-path expander as it used on every cache access).

Addressing in the banked cache is similar to a tradi-
tional cache. The high order bits of the address are
used as a tag, and the middle bits are used as an in-
dex. Because a MultiOp is variable length and does
not always begin on a n-word boundary in memory,
the low order bits are used as an o�set to index to
the start of the MultiOp in the cache block. When a
PC is presented to address the cache, the cache ad-
dress decoder selects consecutive blocks in both cache
banks.

The fetch mechanism is shown in Figure 3 with an
example fetch operation. The �rst three Ops of Mul-
tiOp C occupy the last three Ops of the cache block in
bank one, and the last two Ops of C occupy the �rst
two Ops of the next cache block in bank zero. The
PC is the address of the �rst Op of C at the begin-
ning of fetch cycle. There are three sequential steps
required to fetch MultiOp C. These are also shown in
Figure 3 and detailed below.

1. The current block containing the �rst three Ops
(in bank one) and the successor block contain-
ing the fourth and �fth Ops (in bank zero) are
requested from the cache.

2. For correct alignment of the MultiOp, the fetch
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hardware must know where the last Op of Mul-
tiOp C lies in the successor cache block. To do
this, it searches for the tail bit of the last Op in C.
This information, combined with the knowledge
of the starting position, permits the cache fetch
stage to perform correct alignment by swapping
the twoMultiOp fragments. Note that a banking
factor of two facilitates such an exchange [16].

3. The header bits for all Ops in the blocks are
scanned to determine the Ops belonging to the
MultiOp, starting from the location of the �rst
Op in the requested MultiOp. Valid select lines
are then enabled to pass only the requested Ops
to the expander stage [16].

While fetching the current MultiOp, NextPC must
also be computed for the instruction fetch on the next
clock cycle. In the schemes described by Conte et

al. [16], this was done via a BTB but none exists in
TINKER. The next section describes NextPC com-
putation for the banked cache.

4 NextPC computation

While fetching the current MultiOp, NextPC must
also be computed. In the absence of an Op that
changes the control ow of the program (such as a
branch or a function call), this can be accomplished
by using extra bits to store the o�set of the next se-
quential MultiOps in the cache. The hardware sup-
port for NextPC computation is described and the
algorithm is then introduced.

4.1 Hardware Support

Figure 4 is a conceptual depiction of the hardware
required for NextPC computation (a more concrete
discussion on implementation follows in Section 6).
An o�set �eld and a bank bit are maintained for every
Op in a cache block. The o�set �eld indicates the
o�set within the cache block of the next sequential
MultiOp, and is only set for the �rst Op in a MultiOp.
The bank bit indicates if the next sequential MultiOp
begins in the current bank or in the next bank: the
bit is set to 1 if the next MultiOp begins in next bank,
and to 0 if the next MultiOp begins in the same bank.
The o�set �eld is substituted into the appropriate
bit positions of the current PC and the bank bit is
added to the tag and index bit concatenation to form
NextPC. For the TINKER encoding, the o�set �eld is
placed into positions PC8-PC6. An adder is required

Assume cache block shown has low order index bits of ‘01’.

Offset FieldsMultiOp

1011  0000  0000  1101  0000  1010  0000  0000A       A      A      B      B      C      C      C

0         0        0        0        0        1        0        0

Bank Bits

PC     Tag   Index  Offset 000000

NextPC    Tag       Index   Offset 000000

1  0101

3

1

Bank bits Offset field

+

Figure 4: Hardware support for NextPC computa-
tion: A cache access for MultiOp C in a TINKER-8
banked cache is shown. A valid bit is associated with
every o�set �eld. Because C's o�set �eld is valid, it is
placed into the appropriate position for the NextPC
address, and C's bank bit is added to the remaining
high order bits to form a new index and tag.

to add the bank bit to the tag and index bits of the
PC to create the tag and index of NextPC.

For a banked cache that has a block size of n words
(Ops), a log2 n bit o�set �eld per word is needed, plus
a valid bit and a bank bit. Compared to a cache de-
sign without o�set �elds and bank bits, this requires
approximately 8% more bits.

4.2 Algorithm overview

The values for the o�set �eld and the bank bit are set
at cache miss time, as Ops are received into the cache-
memory interface. Since the �elds are computed and
set as the cache block is �lled, no extra cycles are
required. There are cases when these �elds are set
during a cache hit, but these are exceptional cases
and are explained later. The basic operation of the
algorithm is outlined in the following steps.

1. Fetch the missing MultiOp: When a cache
miss occurs, Op fetches are generated to the next
level of the memory hierarchy. All fetch requests
are performed as a multiple of the block size;
that is, given a block size n, all fetch requests
are either for n or 2n Ops. Since the size of
the missing MultiOp is unknown at miss time,
enough Op fetches are generated to retrieve the
largest possible MultiOp. If the miss address
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begins on a cache block boundary (o�set 0 in
a block), n Ops fetches are generated, to fetch
the entire cache block. If the miss address is at
o�set 0 < m < n, 2n fetches are generated to
�ll the �rst and second blocks, in case the Mul-
tiOp spans two blocks. Note that this prefetches
at least some Ops of the next sequential Mul-
tiOp (the one that follows the MultiOp being
currently requested).

2. Set the o�set �eld and the bank bit: A
counter in the cache-memory interface is used to
count the number of Ops per MultiOp. When
a fetch is initiated, the counter value is set to
zero. For every subsequent Op that does not
have a set tail bit, the counter is incremented by
one. When an Op with a set tail bit is received,
the counter is reset to one (what is done with
the counter value before resetting is explained
shortly). Again, for every subsequent Op that
does not have a set tail bit, the counter is in-
cremented by one. When an entire MultiOp has
been retrieved, the counter value and the start-
ing o�set m of the just-retrieved MultiOp are
used to determine the starting o�set p for the
next MultiOp. If p > m, the bank bit is set to 0,
since the next MultiOp begins in the same cache
block as the just-retrieved MultiOp. If p � m,
the bank bit is set to 1.

(a) If the starting o�set of the missing MultiOp
is non-zero, then the �rst Op received by
the cache-memory interface could have an
unset header bit. In this case, it and all
Ops up to the �rst Op with a set tail bit
are the latter portion of a MultiOp. The
value of the counter when the �rst Op with
a set tail bit is received is only a partial

length. The partial length is stored in the
�rst o�set �eld of the cache block, and the
o�set �eld's valid bit is set to invalid.

(b) Due to prefetching, Ops at the end of a
fetched cache block might be the beginning
portion of a MultiOp. If all of the Ops for
this MultiOp are not retrieved during the
current fetch (an Op with a set tail bit is
not the last Op in the block), the counter
value at the end of the fetch holds only a
partial length for the MultiOp. Similar to
the case described above, the partial length
is stored in the last o�set �eld for the cache
block, and the o�set �eld's valid bit is set
to invalid.

5 Illuminating the algorithm

5.1 The Basic Case

The algorithm is best explained through examples.
In Figure 5(a), the cache state is shown when a miss
occurs for MultiOp C. The miss is detected by the
presence of an invalid o�set �eld for the location ac-
cessed. Since the location accessed is at o�set �ve,
enough Op fetches are generated to �ll to the end of
the next cache block. Not only is the remainder of
MultiOp C fetched but so is at least part of MultiOp
D, as shown in Figure 5(b). Only a portion of D is
fetched, so the last o�set �eld in its block is set as a
partial length.

5.2 Invalidations

When a MultiOp is loaded on a cache miss, it might
displace portions of other MultiOps. If the beginning
of a MultiOp Z is replaced, this is detected when Z
is later accessed and a tag mismatch occurs. This
case is shown in Figure 5(b) when MultiOp X is dis-
placed. When only the latter portion of a MultiOp Z
is replaced, a situation can occur where the beginning
of Z is in the previous block with a valid o�set �eld
indicating that Z continues into the successor block.
This scenario is shown in Figure 6 and is handled by
performing extra work at cache miss time. In Fig-
ure 6(a), MultiOp C is shown as spanning two cache
blocks. When the miss for W is generated and the
cache �ll for W commences, the latter Ops of Mul-
tiOp C are displaced although the beginning portion
of C is still cache resident. To indicate that all of C
is not cache-resident, the o�set �eld for C is marked
invalid. This invalidation process requires searching
the o�set �elds for C's o�set entry. This search can be
performed in parallel with the cache �ll and so does
not require any extra cycles. During a subsequent
access for MultiOp C, its invalid o�set �eld indicates
that all of C is not resident in the cache, and a fetch
is generated.

5.3 Ghost blocks

An interesting situation can occur when an entire
MultiOp is cache-resident and spans two blocks but
its o�set �eld is invalid. In this case, the cache blocks
are referred to as ghost blocks. Figure 7 depicts how
this situation can occur. When a cache miss oc-
curs for MultiOp A, the beginning of MultiOp C is
prefetched, as shown in Figure 7(b). Also, a partial
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a) Cache blocks before fetching MultiOp C

b) Cache blocks after fetching MultiOp C and prefetching part of D

Figure 5: Fetching due to a cache miss: A miss for MultiOp C is shown and the states of the data array,
o�set �elds, and bank bits are shown for when the miss is generated (a) and after MultiOp C has been
fetched (b). Part of MultiOp D was also fetched, due to prefetching. All of D was not prefetched so the
corresponding o�set �eld is set to invalid.

a) Cache blocks before fetching MultiOp W

b) Cache blocks after fetching MultiOp W and prefetching part of X
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Figure 6: Invalidations of displaced MultiOps: A miss for MultiOp W is shown and the states of the data
array, o�set �elds, and bank bits are shown for when the miss is generated (a) and after MultiOp W has
been fetched (b). Part of MultiOp X was also fetched, due to prefetching. All of X was not prefetched so
the corresponding o�set �eld is set to invalid.
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b) Cache blocks after fetching MultiOp A and prefetching B and part of C
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c) Cache blocks after fetching MultiOp D and ‘‘prefetching’’ the latter part of C

C  C  C  C   C  D  D  D 0101  0000  0000  0000 0000  1001 0000  0000

0   0    0   0    0   1    0   0

Figure 7: Ghost blocks: MultiOp C is shown as being fetched into the cache yet having an invalid o�set
�eld. The beginning portion of C is prefetched and a partial length is assigned (b). The latter portion of C
is then prefetched and a partial length assigned for that part also (c). If C is later accessed, an extra cycle
is required to detect that although C's o�set �eld is invalid, it is entirely cache-resident and its o�set �eld
and bank bit need to be set.

length for C is set. A later cache miss for MultiOp D
causes a cache miss, and D is fetched and the latter
portion of C is prefetched, as shown in Figure 7(c)
(assume that the beginning portion of C has not been
displaced from the cache and an access for C has not
occurred before the access for D) 1. All of the Ops
for MultiOp C are now in the cache but because of
the access pattern of the program, C's o�set �eld is
not set to valid. When an access for C is generated,
the tags for both blocks match, indicating that C is
cache-resident, but the o�set �eld is invalid, indicat-
ing that C's length has yet to be computed. An extra
cycle is required to detect that two partial lengths for
C are set and then set the o�set �eld and bank bit
for C. MultiOp C can then be forwarded to the next
stage in the pipeline.

1All of the Ops that compose MultiOp D are not shown, as

D spans two cache blocks. Assume that they were also fetched

into the cache.

6 Implementation Considera-

tions

The use of dedicated hardware for NextPC com-
putation may appear complex at �rst glance but
in fact the hardware requirements are straightfor-
ward. Where Figure 4 gives a high-level view at the
hardware, Figure 8 provides details of how the logic
could be implemented. In actual implementation,
two possible values of the tag+index for NextPC
are computed (Steps 1c and 1d in Figure 8). The
reason for this is because of the access latency of
the o�set �eld and bank bit storage (henceforth re-
ferred to as the length info storage). (In the fol-
lowing discussion, tag+index for the current PC
is referenced as PCtag+index, and tag+index for

NextPC is referenced as NextPCtag+index.) Note
that NextPCtag+index can have one of two val-
ues. If the bank bit is 0, NextPCtag+index is
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Figure 8: A possible implementation of the NextPC
logic. Parallel row and column access is performed
into the storage for the o�set �elds and the bank bits
(Steps 1a and 1b). In parallel with this, tag+index
for two potential NextPCs are computed, in the case
where the bank bit turns out to be 1 (Step 1c) and
the case where it is a 0 (Step 1d). After the ac-
cess of the bank bit storage is complete, the bank
bit and the branch control line are used to multiplex
between the two potential tag+index quantities and
high order bits from any incoming branch target ad-
dress (Step 2a). A parallel multiplex operation con-
trolled by the branch control line selects the correct
offset (Step 2b). The �nal step is concatenating the
correct tag+index and offset (Step 3).

the same as PCtag+index. If the bank bit is
1, NextPCtag+index is generated by adding 1 to
PCtag+index. So, potentially an addition is required
to generate NextPC. If the add is started after the
access of the length info storage, it is performed at
the very end of the clock cycle. This can lengthen
the time required for NextPC computation signi�-
cantly. An alternative is to generate both possible
NextPCtag+index values and to start doing so in
parallel before the length storage info access com-
pletes. The addition is started at the beginning of
the clock cycle, just after PCtag+index is available
and before the length info storage access has com-
pleted. The other possible NextPCtag+index value
is fetched from the PC. After the length info storage
access has completed, the bank bit is used to select
the correct new NextPCtag+index value to use. The
tradeo� is that a two-way multiplex function instead
of an add is performed after length storage info ac-
cess.

NextPC computation requires an access to the length

info storage. This access if performed in parallel
with cache access (timing issues are examined in Sec-
tion 7.2. If the time required for length storage info
access is the same as for cache access, NextPC gener-
ation as described above would stretch the cycle time,
because of the extra multiplexing step. However, the
logic can be designed so that cycle time is una�ected.
The length info storage can be implemented as a sep-
arate storage that is substantially smaller than the
cache. Hence, it can be accessed quickly as a two-
dimensionalmemory, with row and column select per-
formed in parallel [17][p.151]. The add is performed
in parallel with the access and does not stretch the
cycle time as it operates on narrower operands than
an integer add by the ALU. The key step then is
the multiplexing performed at the very end. In fact,
this multiplexing is required regardless of the selec-
tion of potential tag+ indexNextPC values. A mul-
tiplexor is required so that a branch target address
can be selected when a branch Op executes. Such a
multiplexor is required in any machine that supports
branch operations. The multiplexor that selects be-
tween the two NextPC tag+index quantities can be
combined with the simple multiplexor that selects be-
tween NextPC and a branch target address. For the
banked cache design, two multiplexors are required,
to select the proper high order bits (tag+index) and
the proper low order bits (offset). A control line
from the FU that executes branch Ops is used as a se-
lect line into both multiplexors, as shown in Steps 2a
and 2b in Figure 8. A larger amount of logic is re-
quired for NextPC computation in a banked cache
as compared to a traditional cache. As most of the
additional logic operates in parallel, the cycle time
requirements are no more demanding than for a tra-
ditional design.

7 Related Issues

7.1 Sub-blocking and computing

NextPC

The banked cache design can employ sub-blocking
although this may be of limited bene�t [2]. NextPC
computation in the presence of sub-blocking is per-
formed exactly as it is when sub-blocking is not used.
An o�set �eld and a bank bit are maintained for ev-
ery Op in every cache block and are used in the same
fashion as before.

8



7.2 Set associativity

NextPC computation is more complicated when set-
associativity is used. Firstly, set-associativity might
not be appropriate for a cache design that uses a hit-
path expander. Set associativity requires parallel tag
compares to select the correct block from the set. As
the parallel tag compares are performed, each pair of
blocks might also need to be swapped in parallel , so
that the correct MultiOp is ready to be sent to the
expander as soon as the block select stage is com-
plete. Additionally, the block select function requires
a stage of multiplexing that is not needed in a direct-
mapped cache, which can stretch the cycle time. For
these two reasons, high degrees of associativity may
not be a good choice for the banked cache design.

b) Pipeline stages for a set-associative organization

PC
ready

cycle n cycle n+1 cycle n+2 cycle n+3
     Cache
     access        Block    Select
             swaps  MultiOps           MultiOp
   Compute          expansion
    NextPCs   Block select

     Cache                        Block
    access        Block    Select             select
             swaps  MultiOps
   Compute          MultiOps
    NextPCs         expansion

a) Pipeline stages for a direct-mapped organization

cycle n cycle n+1 cycle n+2 cycle n+3
     Cache
    access         Block    Select            MultiOp
               swap   MultiOp          expansion
   Compute
    NextPC

     Cache
    access         Block    Select          MultiOp
               swap   MultiOp        expansion
   Compute
    NextPC

PC
ready

Figure 9: Pipeline stages for NextPC computation.

If set associativity is used, NextPC computation
must still be performed in a single cycle. An intu-
itive approach might be to compute multiple \candi-
date" NextPCs in parallel and then select the proper
NextPC based on the block select. This provides
NextPC at too late a time, however. The problem
is depicted in Figure 9. In a direct-mapped cache,
only one set of (o�set �eld, bank bit) is accessed.
There is no choice involved as to which is the proper
NextPC to use, and NextPC is available at the begin-
ning of the next clock cycle (n+1) for the next cache
access (Figure 9(a)). In a set-associative cache, mul-
tiple NextPCs are computed, and these candidates
are available at the same time as NextPC in a direct-
mapped cache (the beginning of cycle n+1). How-
ever, because the block select is performed in the next
pipeline stage in cycle n+1, the correct NextPC to
use is not known until one cycle later, at the begin-
ning of cycle n+2 (Figure 9(b)). This is unacceptable

because NextPC must be available at the beginning
of cycle n+1. One solution to this problem is to pre-
dict in cycle n which block will be selected by the
block select in the next stage (cycle n+1), a tech-
nique termed way prediction. Given the complexi-
ties associated with set-associativity for the banked
cache, a technique that works well at low associativ-
ities is perhaps best suited. Juan et al. proposed a
design that performs way prediction for a two-way
set-associative cache in a single cycle [18]. This tech-
nique can be adapted for NextPC computation for a
set-associative banked cache. The use of way predic-
tion with the banked cache is a future area of research
within the TINKER group.

8 Conclusion

The instruction fetch requirements for VLIW archi-
tecture demand high bandwidth to the instruction
cache. When using a compressed encoding for the
instructions, one alternative for an instruction fetch
mechanism is to use a banked instruction cache. Due
to the variable length nature of compressed encoded
instructions, on every cycle the address for cache
access for the subsequent cycle { NextPC { must
be computed. This paper presented a scheme for
NextPC computation using an o�set �eld and a bank
bit for every Op stored in the instruction cache. The
algorithm to set and use these �elds was also outlined.
Examples were used to illustrate the nuances of the
algorithm, and implementation issues regarding the
feasibility of the hardware were discussed. Further
work is being performed to examine alternative en-
codings and instruction fetch support for VLIWs.
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