
MULTIMEDIA EXTENSIONS TO TINKER

Version 1.0
Matthew D. Jennings

TINKER Microprocessor Laboratory
North Carolina State University
http://www.ece.ncsu.edu/tinker

Direct correspondence to: conte@ncsu.edu

INTRODUCTION

The proposed multimedia extensions to the Tinker architecture encompass multimedia extensions found in
both the Intel MMX technology and the PA-RISC 2.0 architecture. These extensions provide data types and
operations typically found on other general purpose and dsp architectures for handling 2-D & 3-D graphics,
full-motion video and audio. The multimedia extensions to Tinker will distinguish themselves from
traditional multimedia extensions by providing for compiler based speculative and predicated execution.
We also intend to use these new data types and operations to increase the performance of 32-bit integer
code. For 32-bit integer code it will be possible to effectively double the number of ALUs by using the new
data types and operations in a 64-bit Tinker Implementation where sufficient parallelism exists in the code.
This is a draft for Tinker multimedia extensions that will undergo further review.

New Data Types

The new data types for the multimedia extensions are packed integer where multiple integer data quantities
(byte, half-word and word) are grouped into a single 64-bit quantity. General purpose registers will be used
for the packed integer data types. The packed integer data types allow for traditional Single Instruction,
Multiple Data (SIMD) operations that are typical of multimedia applications that operated on 8-bit graphics
pixels and 16-bit audio quantities. Describing these new operations as SIMD is confusing though on a
VLIW architecture that already groups multiple operations or Ops into a single multiple
operation or MultiOp. For Tinker, the tradition SIMD philosophy will now apply for an individual Op,
allowing for more than one SIMD instruction per MultiOp.

The GPRs used to store these data types will include the speculative tag bit, used to support sentinel
scheduling for operations on packed integer data types. See appendix A for information on supporting
speculative execution using sentinel scheduling.

Predicated execution will also be supported. Predication will be possible for each individual quantity in a
packed data type. See appendix B for information on supporting predicated execution for packed data types.

Packed Byte (eight 8-bit quantities)

Packed Half-Word (four 16-bit quantities)

Packed Word (two 32-bit quantities)

Long-Word (existing data type, a 64-bit quantity)

 [63:48]
 quantity3

 [47:32]
 quantity2

 [31:16]
 quantity1

 [15:0]
 quantity0

 [63:32]
 quantity1

 [31:0]
 quantity0

 [63:0]
 quantity0

 [63:56]
quantity7

 [55:48]
quantity6

 [47:40]
quantity5

 [39:32]
quantity4

 [31:24]
quantity3

 [23:16]
quantity2

 [15:8]
quantity1

 [7:0]
quantity0

New Packed Data Operations

The new operations on the packed integer data types include arithmetic, comparison, shift, conversion and
sentinel operations.

Arithmetic operations

The arithmetic operations include packed versions of addition, logical addition, subtraction, logical
subtraction, average, logical average, multiplication and multiply-add. The addition, logical addition,
subtraction and logical subtraction operations include a saturation option that is new to Tinker. When the
saturation version of an operation is selected, if the operation results in an overflow or underflow, the result
is clamped to the largest or smallest representable value, respectively. Saturation is important for graphics
applications that involve shading, for example to prevent a black pixel from becoming white if an overflow
occurs.

The packed average and logical average operations take two packed data types as input, adds corresponding
data quantities, divides each result by two placing the result in the corresponding data location. Unbiased
rounding is performed to reduce the accumulation of rounding errors.

The packed multiplication and packed multiply-add instructions use either byte, half-word or word source
operands, from a packed data type, and provide half-word, word and long-word results, respectively. The
packed multiplication operation gets its source quantities from different locations depending on whether the
high or low version of the instruction is used. For the low version of multiplication, every other packed
quantity is used as a source starting from the packed quantity in the low-order bits. For the high version of
multiplication, every other packed quantity is used as a source starting from the packed quantity in the high-
order bits.

For example, the multiplication low operation for half-words uses the quantities at bit locations [47:32] and
[15:0] of the source GPRs as the source operands. The multiplication high instruction uses the quantities at
bit locations [63:48] and [31:16] of the source GPRs as the source operands. The corresponding results are
always destined to the [63:32] or [31:0] location that overlaps the source operands.

Packed Multiply Low on Half-Word Operation

 * *

 (a2*b2)

 [63:48]
 a3

 b3

 [47:32]
 a2

 [31:16]
 a1

 [15:0]
 a0

 b2 b1 b0

 (a0*b0)

Packed Average on Half-Word Operation

 (Pave) (Pave) (Pave) (Pave)

 [63:48]
 a3

 b3

 [47:32]
 a2

 [31:16]
 a1

 [15:0]
 a0

 b2 b1 b0

 (a3+b3)/2 (a2+b2)/2 (a1+b1)/2 (a0+b0)/2

The packed multiply-add operation for half-words uses all 16-bit half-word source quantities as illustrated
below.

Comparison operations

The comparison operation for the packed integer data types still includes the condition field found in the
integer comparison operation. The new comparison operation compares each of the multiple data quantities
of the SIMD Op in parallel. The result of the comparison is 1 for true and 0 for false. The size of the result
depends on whether it is the byte, half-word, or word or long-word version of the operation.

The packed compare-to-predicate operation behaves as parallel compare-to-predicate operations. Predicate
registers have been expanded from a 1-bit speculative tag bit plus 1 bit (one boolean value in a 2-bit
register) to a 1-bit speculative tag bit plus 8 bits (eight boolean values in a 9-bit register). The expanded

Parallel Compare on Packed Half-Word

 == ? == ? == ? == ?

 …0000

 12

 11

 32 8 33

 32 47 33

 …0001 …0000 …0001

Packed Multiply-Add on Half-Word Operation

 (*+) (*+)

 (a3*b3)+(a2*b2)

 [63:48]
 a3

 b3

 [47:32]
 a2

 [31:16]
 a1

 [15:0]
 a0

 b2 b1 b0

 (a1*b1)+(a0*b0)

Packed Multiply High on Half-Word Operation

 * *

 (a3*b3)

 [63:48]
 a3

 b3

 [47:32]
 a2

 [31:16]
 a1

 [15:0]
 a0

 b2 b1 b0

 (a1*b1)

predicate registers and packed compare-to-predicate operation are used to support predication of the
individual parallel operations in a packed data type operation.

To support boolean reductions using the expanded predicate register the predicate reduction operation has
also been added. The predicate reduction operation can be thought of as a packed compare-to-predicate
operation with packed predicate sources in place of a comparison operation on two general purpose register
sources. Only the logical AND or logical OR D-action specifiers (AN, AC, ON, OC) are used for the
predicate reduction operation.

See appendix B for a detailed discussion of predication support for packed data types.

Shift operations

The shift operations on the packed integer data types include literal shift left (or shift left with immediate),
literal shift right, literal arithmetic shift left and literal arithmetic shift right. The packed shift operations
each perform multiple shifts, one for each data quantity in the byte, half-word, word or long-word packed
data type.

Conversion operations

The conversion operations include pack (and unpack) instructions to convert long-word data quantities to
packed word quantities (or vice-versa), and further pack (or unpack) other quantities already in packed
integer data types. Saturation is employed on the pack instructions and there is a pack instruction for both
logical and signed data. There is a high order and low order version of the unpack instructions for
unpacking the packed data quantities in the bit ranges [63:32] and [31:0] respectively. A typical use of these
instruction is when higher precision is required for intermediate operations, requiring conversion.

Pack predicate and unpack predicate operations are used for manipulating packed predicate registers. Their
operation is analogous to the pack and unpack operations.

The other conversion operations are the pmix and permute operations. These instructions are used to re-
arrange the order of quantities in packed data types. There is a version of pmix and permute for byte, half-
word and word packed data types.

There is a high and low version of mix to distinguish which quantities are mixed together by the operation.
Operation is best described through illustration. The high and low mix operation on half-word quantities is
illustrated below. Operation of the byte and word version can be deduced from it.

Pmix High Operation on Half-Words

 [63:48]
 a

 [47:32]
 b

 [31:16]
 c

 [15:0]
 d

 [63:48]
 e

 [47:32]
 f

 [31:16]
 g

 [15:0]
 h

 [63:48]
 a

 [47:32]
 e

 [31:16]
 c

 [15:0]
 g

Pmix Low Operation on Half-words

 [63:48]
 a

 [47:32]
 b

 [31:16]
 c

 [15:0]
 d

 [63:48]
 e

 [47:32]
 f

 [31:16]
 g

 [15:0]
 h

 [63:48]
 c

 [47:32]
 f

 [31:16]
 d

 [15:0]
 h

The permute operation takes a packed data type as a source and re-arranges the source quantities to provide
for any combination of the source quantities as a result. The following figure illustrates some examples of
how this works for packed half-word quantities.

Sentinel operation

The pcheck operation is used to provide the sentinel function when pack operations are scheduled
speculatively. When pack instructions are scheduled speculatively, speculative tag bits and addresses of
excepting instructions are not propagated through the pack instruction. This information is not propagated
because the other source of the pack instruction may not be affected by an exception. Propagating the
address of the exception would invalidate all of the data quantities from the pack operation, even though
some of them may not be affected by an exception. Further unpacking of the register may result in the
quantities affected by the exception not being used.

Pcheck is introduced to act as the sentinel for data speculatively packed, and possible unpacked, in the
home block that the data is used in. Pcheck uses the source registers orphaned by the pack instruction(s) to
check if a set speculative tag bit was left behind by the pack operation. Pcheck may be implemented with an

Permute Operation on Half-words

 [63:48]
 a

 [47:32]
 b

 [31:16]
 c

 [15:0]
 d

 [63:48]
 d

 [47:32]
 d

 [31:16]
 d

 [15:0]
 d

Source

Destination

Pattern 0000

 [63:48]
 a

 [47:32]
 b

 [31:16]
 c

 [15:0]
 d

 [63:48]
 b

 [47:32]
 d

 [31:16]
 a

 [15:0]
 c

Source

Destination

Pattern 2031

 [63:48]
 a

 [47:32]
 b

 [31:16]
 c

 [15:0]
 d

 [63:48]
 d

 [47:32]
 c

 [31:16]
 b

 [15:0]
 a

Source

Destination

Pattern 0123

existing operation, such as moving a register to itself or moving a register to GPR0 (always zero). Therefore
pcheck will not require a new opcode.

See appendix A for information on supporting speculative execution using sentinel scheduling.

The following chart summarizes the proposed multimedia extensions for Tinker:

Category Assembly Command Description
Arithmetic PADD

PADDL
PSUB
PSUBL
PAVE
PAVEL
PMPY
PMPYADD

Packed integer addition
Logical packed integer addition
Packed integer subtraction
Logical packed integer subtraction
Packed integer average
Logical packed integer average
Packed integer multiplication
Packed integer multiplication with addition of results

Comparison PCMPR

PCMPP

PREDUCE

Packed integer comparison using integer comparison
conditions
Packed compare-to-predicate using integer comparison
conditions
Predicate reduction operation for boolean reduction of
packed predicate inputs

Shift PSHL

PSHR

PSHLA

PSHRA

Logical packed shift left by amount in register or literal
(immediate) value
Logical packed shift right by amount in register or
literal (immediate) value
Arithmetic packed shift left by amount in register or
literal (immediate) value
Arithmetic packed shift right by amount in register or
literal (immediate) value

Conversion PACK
PACKL

PUNPCK

PUNPCKL

PACKP
PUNPCKP
PMIX
PERM

Pack data quantities into next smallest packed data type
Pack logical data quantities into next smallest packed
data type
Unpack data quantities to next largest packed (or non-
packed) data type
Unpack logical data quantities to next largest packed (or
non-packed) data type
Pack boolean predicate values
Unpack boolean predicate values
Mix packed data quantities
Permute packed data quantities

Sentinel PCHECK Provide sentinel function for speculative execution

General Comments

The assembly semantic for the operations on packed integer quantities always start with the prefix P. An
option field is used for specifying the saturated or unsaturated versions of the addition and subtraction
operations. The pack operations always employ saturation.

Bit-wise logical operations on the packed integer data types can be done using the existing Tinker
operations (e.g. AND, NAND, OR, and XOR). Moving packed integer data types from GPR to GPR is also
done using the integer move operation already found in Tinker.

Appendix A: Sentinel Scheduling Support

The fundamental problem in supporting sentinel scheduling [1] for the speculative execution of packed data
type quantities is that propagation of the address for the exception causing instruction will destroy all data
quantities in the result register. This is true because the addresses themselves are 64-bit quantities, the same
size as all of the packed data type registers. Fortunately all of the new operations on packed data type
quantities are non-excepting. More importantly, none of the operations on packed data type quantities cause
exceptions that affect only some of the quantities in a packed data type. For most operations on packed data
type quantities it will be possible to propagate the address of a previously excepting speculative instruction,
as all data quantities will be affected by that exception.

The unusual case is for the pack operation. The pack operation may have one source operand that is
affected by an exception and one that is not. Since the pack operation is simply a data conversion operation
a result in which some of the quantities are valid (not affected by an exception) and some of the quantities
are invalid (affected by an exception) is required. For other operations in which one of the source operands
is affected by an exception, all of the quantities of the result are also affected by the same exception, making
the pack operation unique in this sense. Therefore, unless the instruction is a pack operation, it is possible to
propagate the address of the exception causing instruction.

For a speculatively executed pack instruction in which one source operand is affected by an exception and
the other is not it is possible that the pack operation itself should be executed but that the exception should
not be handled. This is possible if, after unpacking, the speculative execution involving the quantities
affected by the exception were predicted wrong. For this case we need execution to continue without
exception handling for the quantities not affected by the exception of one of the source operands. For this
reason it will not be possible to propagate the address of an exception causing instruction for a
speculatively executed pack instruction.

Speculative Execution of Packed Operations

The solution for the speculative execution of operations on packed data types will focus on the
characteristics of the pack and unpack operations. The speculative scheduling of instruction sequences that
include the pack operation may require the inclusion of the packed sentinel operation pcheck. The pcheck
instruction will need to be included if the speculative scheduling of a pack instruction places it dependent
on a speculatively scheduled potentially excepting instruction but before its sentinel. Assume each
potentially excepting instruction and its sentinel delineate the endpoints of a restartable instruction interval
as defined by Mahlke et al. [1]. Then, if the speculative scheduling of a pack instruction places it in a
restartable instruction interval a pcheck instruction will be required as a sentinel for the pack instruction.

Non-speculative packed operations

The non-speculative execution of all of the new extensions for packed data type operations support
speculative execution using sentinel scheduling as defined by Mahlke et al. [1]. When a source operand of a
packed data type instruction has a set speculative tag bit exception handling is done. When no source
operands have a set speculative tag bit the operation is executed. No exceptions result from the execution of
any of the packed data type operations. The general description of the packed data type operations are
found in the main text of this document.

Speculative pack(l) within a restartable instruction interval

The speculative execution of a pack(l) instruction scheduled within a restartable instruction interval has a
number of distinctive features since the propagation of the address of an excepting instruction is not
possible:

1. Source registers of the speculatively scheduled pack(l) instruction must be added to the live set of
registers for the (each) restartable instruction interval that the pack(l) instruction is scheduled within.

2. The destination registers of a speculatively scheduled pack(l) instruction must be different from its
sources registers.

3. The speculative tag bit of the destination is reset.

As it is impossible to propagate the address information for a potentially excepting instruction from the
source register to the destination register of the speculative pack(l) instruction the source registers need to
remain unmodified for later checking. These sources can be described as orphaned by the pack(l)
instruction. The orphaned source registers still contain the information required for exception handing, the
speculative tag bit and, possibly, the address of an excepting instruction. The pcheck operation will be
performed non-speculatively using the orphaned sources to provide the sentinel function for the pack(l)
instruction.

The orphaned sources are added to the (each) live set of registers for any restartable instruction interval that
the pack(l) instruction is scheduled within. This will guarantee that the orphaned sources are left
unmodified, permitting later checking just before data quantities are needed non-speculatively. Requiring
that destination registers differ from their source registers is a side-effect of this requirement.

Resetting the speculative tag bit of the destination register allows more potentially excepting instructions to
be speculatively scheduled after this speculatively scheduled pack operation. As the pack(l) operation does
not cause an exception, the speculative tag bit of the destination will always be reset.

Speculative pack not within a restartable instruction interval

The speculative execution of a pack instruction not scheduled within a restartable instruction interval will
not require a pcheck operation as it will not be possible for one of its source operands to have a set
speculative tag bit. Therefore it will not be necessary to add its sources to any live sets of registers and its
destination register can be the same as one of its source registers.

Speculative packed operation other than pack(l) and pcheck

If the speculative tag bit of one or more source registers is set, set the tag bit of the destination and
propagate the address of the first source to have a set speculative tag bit. This follows the classical
definition of sentinel scheduling. As none of the packed data type operations cause an exception the
destination speculative tag bit will be set only if one or more of its sources has a set speculative tag bit.

Pcheck operation

The pcheck operation uses an orphaned source register of a pack(l) operation to perform the sentinel
function for a potentially excepting instruction, scheduled prior to the pack operation, that the pack(l)
operation is dependent on. The pcheck instruction is used to replace the sentinel function assigned to the
potentially excepting instruction, as the sentinel information for that instruction will not be propagated. If
the assigned sentinel is the sentinel portion of another operation, a pcheck will be inserted before that
instruction. If the assigned sentinel is an explicit sentinel, pcheck will replace that instruction. A pcheck
operation is required for each orphaned source of a speculative pack(l) instruction that is dependent on a
potentially excepting instruction.

Pcheck’s operation is to check an orphaned source register to a pack(l) instruction. If that source register
has a set speculative tag bit, the register will also contain the address of an excepting instruction whose
speculative execution was predicted correctly. Pcheck can be implemented with an existing instruction, such
as move. Moving the contents of the orphaned source register to itself (or to GPR0) and using the existing
sentinel function of the move operation will provide the right functionality for pcheck. Pcheck and the
explicit sentinel are identical except that the explicit sentinel uses the propagated sentinel information as its

source register while pcheck uses the orphaned source register of a pack(l), containing the sentinel
information, as its source.

Examples of Speculative Packed Operations

The provided examples for speculatively executed operations on packed data types include packed
operations between groups of pack and punpck instructions. Examples with pack(l) instructions provide for
the interesting cases as sentinel scheduling can be supported without modification for packed operations
that do not include the pack(l) instructions.

In the first example of speculatively scheduled operations on packed data types it is assumed that none of
the operations between the pack and punpck instructions are potentially excepting instructions. It is also
assumed that each source to the pack instructions are in a restartable instruction interval (delineated by a
speculative potentially excepting instruction and it sentinel). Illustrated in the figure are source and
destination registers, including the speculative tag bits, for the instructions of the example. In the first
example, s2, the second source to a pack operation, has either caused an exception or is propagating the
information for a previous exception. The exception occurred at PC address addr.

0 1 0 0

0 0

0

0

0 0

0 0PACK

PADD, PCMPR, PSHL
other non-excepting ops

PUNPCK

PUNPCK

PCHECK(S1)
before using

PACK

PCHECK(S2)
before using

PCHECK(S3), PCHECK(S4)
before using

s1 s2 - addr s3 s4

q1 q2 q3 q4

q1‘ q2‘ q3‘ q4‘

r1 r2 r3 r4

r1‘ r2‘ r3‘ r4‘

r1‘ ‘ r2‘ ‘

if result r2‘‘ not needed,
exception is not handled

Since it is possible that each pcheck operation is in a different basic block it is possible for an exception to
affect the result in r2‘‘ but that the exception will not be handled. This occurs when a branch is not
predicted correctly and the speculative execution of the quantities associated with r2‘‘ are not needed.

In the second example potentially excepting instructions are assumed between the pack and punpck
instructions. Again it is also assumed that each source to the pack instructions are in a restartable instruction
interval. Again s2, the second source to a pack operation, has either caused an exception or is propagating
the information for a previous exception. The exception occurred at PC address addr1. Also, now it is
assumed that the potentially excepting instruction between the pack and punpck instructions causes an
exception at PC address addr2.

Figure for example 1

0 1 0 0

1 1

0

1

1 1

0 0PACK

non-excepting ops

PUNPCK

PUNPCK

PCHECK(S3)
before using

PACK

PCHECK(S4)
before using

PCHECK(S1), PCHECK(S2)
-> handle exception @ addr1

s1 s2 - addr1 s3 s4

q1 q2 q3 q4

q1‘ q2‘ q3‘ q4‘

addr2

addr2 addr2

addr2 addr2

exception @ addr2 1 addr2

next non-speculative op
-> handle exception @ addr2

Both exceptions will be handled in order as pcheck(s2) will be scheduled before the data quantity dependent
on source s2 is used non-speculatively.

Figure for example 2

Appendix B: Predicated Execution Support

Predicated execution will be supported for operations on packed data quantities by expanding the predicate
registers to include eight predicate bits and introducing a packed compare-to-predicate operation for writing
to the enlarged predicate register. The predicate registers will now be nine bits total, eight 1-bit predicates
and an additional bit for the speculative tag bit. The new predicate register structure is illustrated below.

The same predicate registers will be used for all operations. How the predicate register is used will depend
on the data type and options assumed by the operation (as explained below). Each data quantity in a packed
data type will have one or more significant predicate bits.

For operations with packed byte results:
1. all fields in the predicate register will be significant to their corresponding parallel operation.

For operations with packed half-word results:
1. quantity0 and quantity1 predicates are significant to parallel operation 0.
2. quantity2 and quantity3 predicates are significant to parallel operation 1.
3. quantity4 and quantity5 predicates are significant to parallel operation 2.
4. quantity6 and quantity7 predicates are significant to parallel operation 3.

For operations with packed word results:
1. quantity0, quantity1, quantity2 and quantity3 predicates are significant to parallel operation 0.
2. quantity4, quantity5, quantity6 and quantity7 predicates are significant to parallel operation 1.

For operations with long-word results:
1. quantity0, quantity1, quantity2, quantity3, quantity4, quantity5, quantity6 and quantity7 predicates are

significant to the operation.

Predicated Packed Operations

The operation of packed instructions dependent on a predicate will be as though there were multiple
operations in parallel, with each operation dependent on its own predicate value. Which data type is
specified for the packed data type operation will determine how many parallel operations, and predicate
values, there are. For example, operations on packed half-word quantities will behave as though there are
four separate operations on half-word quantities, each with its own predicate value.

Options for predicate values

Predicate inputs to non-packed operations have one value, True or False. Predicate inputs to packed data
type operations have the option of having a single value, the same value for each parallel operation, or
multiple values, a separate value for each parallel operation. The S/M field for packed data type operations
will specify whether single or multiple values will be used. If a single value is chosen, all eight predicate
bits are significant to that value. If multiple values are chosen, the predicate bit(s) significant to each
parallel operation are as discussed above.

Each predicate value can optionally be the logical AND or the logical OR of its significant predicate bit(s).
If the result of the logical AND or logical OR, as specified by the AND/OR field, of the significant
predicate bit(s) is 1 the predicate value is True. Conversely, if the logical AND or logical OR, as specified
by the AND/OR field, of the significant predicate bit(s) is 0 the predicate value is False.

quantity7
predicate

quantity6
predicate

quantity5
predicate

quantity4
predicate

quantity3
predicate

quantity2
predicate

quantity1
predicate

quantity0
predicate

spec. tag
bit

For each separate operation:
1. If the predicate value is True the corresponding quantity in the destination register will be modified to

reflect the result of this operation.
2. If the predicate value is False the corresponding quantity in the destination register will not be modified

Packed compare-to-predicate operation

Packed compare-to-predicate operation will be similar to multiple instances of the non-packed compare-to-
predicate operations, with the number of instances dependent on the packed data type specified in the
B/H/W/X field. For example, for packed compare-to-predicate on packed byte quantities eight comparison
results will be used, along with the D-action specifiers, for eight predicate results. The eight comparison
results will be equivalent to the packed compare operation for the same integer comparison condition. One
comparison result for each data quantity. The D-action specifiers for the packed compare-to-predicate will
be the same for each of the eight comparison results. Also, the predicate input to the packed compare-to-
predicate instruction will have the same options as predicate inputs to other instructions. Namely, the
predicate input may have a single value for all packed quantities or multiply values, one for each packed
quantity. The predicate values can optionally be the logical AND or the logical OR of the significant
predicate bits, as described above.

For packed compare-to-predicate on packed byte quantities:
1. all fields in the predicate register will be set to the result of the D action on their corresponding

compare result.

For packed compare-to-predicate on packed half-word quantities:
1. quantity0 and quantity1 predicates are set to the result of the D action on compare result 0.
2. quantity2 and quantity3 predicates are set to the result of the D action on compare result 1.
3. quantity4 and quantity5 predicates are set to the result of the D action on compare result 2.
4. quantity6 and quantity7 predicates are set to the result of the D action on compare result 3.

For packed compare-to-predicate on packed word quantities:
1. quantity0, quantity1, quantity2 and quantity3 predicates are set to the result of the D action on compare

result 0.
2. quantity4, quantity5, quantity6 and quantity7 predicates are set to the result of the D action on compare

result 1.

For packed compare-to-predicate on long-word quantities:
1. quantity0, quantity1, quantity2, quantity3, quantity4, quantity5, quantity6 and quantity7 predicates are

set to the result of the D action on the compare result.

Packed Predication’s Affect on Speculative Execution

Instruction promotion (speculative execution of predicated instructions) as described in [2] can be allowed
in special cases. An instruction can be promoted if its promotion does not make the instruction dependent
on a potentially excepting instruction. Also, an instruction can be promoted even if its promotion makes the
instruction dependent on a potentially excepting instruction, as long as each of the data quantities in the
result have the same predicate value (originate from the same basic block). This restriction is required as
propagating the PC address of an exception using sentinel scheduling, as described in appendix A, requires
all 64-bits of the register. All data quantities of a result would therefore be invalidated by the propagation of
an exception’s PC address. This can only be allowed if all data quantities would have been affected by the
same exception. If each of the data quantities in the result have the same predicate value (originate from the
same basic block) they all should be affected by an exception.

The case of a packed operation with differing predicate values for some of its data quantities could be the
result of active compiler grouping of operations on smaller data quantities into a single packed operation. If

the smaller data quantities originate from different basic blocks their corresponding predicate values could
be different. For this special case, speculative execution can not be dependent on a potentially excepting
instruction as it is now possible that some data quantities should be affected by the exception while others
should not be affected by the exception.

Packed Operation Example: String Copy

This string copy example for illustrating the usefulness of packed operations is derived from the paper on
Parallelization of Control Recurrences for ILP Processors by M. Schlansker et. al. [3] . The example for
illustrating control height reduction in the paper is string copy with count, the C code for which follows:

Count = -1 ;
do {

*q++ = *p ;
count++ ;

} while (*p++)

This string copy example for illustrating the usefulness of packed operations uses the intermediate code for
this C code after a control height reduction transformation and optimizations have been applied. A
comparison of this intermediate code (after transformation and optimization) will be made with intermediate
code that assumes the availability of packed operations as described in the document Proposed Multimedia
Extensions to Tinker. Also, implementation issues in Tinker assembly are discussed for this example.

Intermediate code for string copy after transformation and optimization

The intermediate code from [3] after a control height reduction and optimizations for the string copy with
count is provide below: (Note: this intermediate code differs slightly from [3] due to corrections. The count
register has been renamed to vr13 and the predicate is re-initialized at the beginning of the exit code.)

vr1 = p
vr9 = q
vr13 = -1
W = TRUE

 loop: vr2 = vr1 + 1 ; vr3 = vr1 + 2 ; vr4 = vr1 + 3
vr5 = load vr1 ; vr6 = load vr2 ;
vr7 = load vr3 ; vr8 = load vr4
W = AND(W, (vr5 != 0), (vr6 != 0), (vr7 != 0), (vr8 != 0))
vr10 = vr9 + 1 ; vr11 = vr9 + 2 ; vr12 = vr9 + 3
store vr9, vr5 if W
store vr10, vr6 if W
store vr11, vr7 if W
store vr12, vr8 if W
vr1 = vr1 + 4 if W
vr9 = vr9 + 4 if W
vr13 = vr13 + 4 if W
if W go to loop

 exit: W = TRUE
store vr9, vr5 if W
count = vr13 + 1 if W
W = AND(W, (vr5 != 0))
store vr10, vr6 if W
count = vr13 + 2 if W
W = AND(W, (vr6 != 0))
store vr11, vr7 if W
count = vr13 + 3 if W
W = AND(W, (vr7 != 0))
store vr12, vr8 if W
count = vr13 + 4 if W

Intermediate code assuming existence of packed operations

The intermediate code for the string copy with count after a control height reduction and optimizations has
been rewritten with the assumption that packed operations exist. Packed byte data types will be used in the
loop code as each of the ascii characters are represented as eight bit quantities. In Tinker a packed byte data
type represents eight byte quantities as Tinker is a 64-bit architecture. During the iterations of the loop the
intermediate code assuming packed byte quantities will perform twice as much work, with fewer
instructions, since the intermediate code from the paper [3] performs four character copies per loop
iteration. The following intermediate code is for string copy with count assuming the existence of packed
operations:

vr1 = p
vr9 = q
vr13 = -1
W = TRUE

 loop: vr5 = load vr1 /* load long-word of packed byte quantities */
W = AND(W, (byte1 != 0), (byte2 != 0), … , (byte8 != 0))
store vr9, vr5 if W /* long-word store of packed byte quantities */
vr1 = vr1 + 8 if W
vr9 = vr9 + 8 if W
vr13 = vr13 + 8 if W
if W go to loop

exit: Wa = (byte1 != 0)
Wb = AND((byte1 != 0), (byte2 != 0))
Wc = AND((byte1 != 0), (byte2 != 0), (byte3 != 0))
Wd = AND((byte1 != 0), (byte2 != 0), … , (byte4 != 0))
We = AND((byte1 != 0), (byte2 != 0), … , (byte5 != 0))
Wf = AND((byte1 != 0), (byte2 != 0), … , (byte6 != 0))
Wg = AND((byte1 != 0), (byte2 != 0), … , (byte7 != 0))
store vr9, vr5
vr13 = vr13 + 1
store vr9 + 1, vr5 + 1 if Wa /* conditional byte store of char through end-of-str */
vr13 = vr13 + 1 if Wa
store vr9 + 2, vr5 + 2 if Wb /* conditional byte store of char through end-of-str */
vr13 = vr13 + 1 if Wb
store vr9 + 3, vr5 + 3 if Wc /* conditional byte store of char through end-of-str */
vr13 = vr13 + 1 if Wc
store vr9 + 4, vr5 + 4 if Wd /* conditional byte store of char through end-of-str */
vr13 = vr13 + 1 if Wd
store vr9 + 5, vr5 + 5 if We /* conditional byte store of char through end-of-str */
vr13 = vr13 + 1 if We
store vr9 + 6, vr5 + 6 if Wf /* conditional byte store of char through end-of-str */
vr13 = vr13 + 1 if Wf
store vr9 + 7, vr5 + 7 if Wg /* conditional byte store of char through end-of-str */
vr13 = vr13 + 1 if Wg
count = vr13

While the exit intermediate code has a comparable number of instructions as the exit code the paper [3]
would have had if it also had been written for eight character copies per loop iteration there is a significant
amount of parallelism in this exit code. An extended Tinker assembly implementation, as discussed below,
will be able to exploit this parallelism.

Tinker Assembly implementation issues

Implementing the intermediate code that assumes packed operations into extended Tinker assembly is
mostly straightforward. Byte or long-word versions of the load and store operations are specified by
choosing the appropriate B/H/W/X field for the byte, half-word, word or long-word options for these
operations. The loop code uses the long-word versions of load and store (L.X and S.X respectively) while
the exit code uses the byte version of the store operation (S.B).

The loop code functional statement
W = AND(W, (byte1 != 0), (byte2 != 0), … , (byte8 != 0))

can be implemented using the packed compare-to-predicate operation with the previous W value as the
predicate input. The predicate input W will be True if all of the packed predicate bits are one and False
otherwise (if one or more packed predicate bits equal 0). The unconditional D action specifier will be used
so that the result, W, is zeros or False if the predicate input is False. Thus the intermediate code statement

W = AND(W, (byte1 != 0), (byte2 != 0), … , (byte8 != 0))
can be replaced with the Tinker assembly statement

%PRn %PR0 = PCMPP.B.!=.UN.UC(vr5, vrPEOS, %PRn)
where the predicate input and 1st destination are the same, the 2nd destination is not used (%PR0 always
False), B specifies packed byte version, UN and UC specify unconditional D action specifiers, and the
vrPEOS source contains packed end-of-string characters.

In the exit code predicates Wa, Wb, … , Wg will be calculated using the unpack predicates (PUNPCKP)
command and the predicate reduction (PREDUCE) command. (This use of the predicate reduction
command will also give an indication of how packed predicates can be used as a powerful boolean
reduction tool.)

Upon entering the exit code the packed predicate W, generated in the loop code, contains all of the
information needed to calculate the predicates Wa, Wb, … , Wg, specifically, which character location
contains the first end-of-string character. Unpacking of the predicates in W, followed by boolean
reductions, will be used to calculate the correct dependencies of Wa, Wb, … , Wg on the first end-of-string
character. This can best be illustrated using Tinker assembly instructions with discussion following. In the
following Tinker assembly W*’s are aliases for predicate registers, with the subscripts indicating which
predicates remain after unpacking.

Wabcd, Wefgh = PUNPCKP (W)
Wab, Wcd = PUNPCKP (Wabcd) ; Wef, Wgh = PUNPCKP (Wefgh)
Wa, Wb = PUNPCKP (Wab) ; Wc, Wd = PUNPCKP (Wcd)
We, Wf = PUNPCKP (Wef) ; Wg, Wh = PUNPCKP (Wgh)

Wb = PREDUCE.AN (Wab.AND, %PR1) /* operation not required, Wab.AND can be used as is */
Wc = PREDUCE.AN (Wab.AND, Wc.AND)
Wd = PREDUCE.AN (Wabcd.AND, %PR1) /* operation not required, Wabcd.AND can be used as is */
We = PREDUCE.AN (Wabcd.AND, We.AND)
Wf = PREDUCE.AN (Wabcd.AND, Wef.AND)
Wg = PREDUCE.AN (Wf.AND, Wg.AND)

PR1 is always True and can be used as a source to the predicate reduction operation. The assembly
instructions that do use %PR1 as an input though are not required in this example. This is because the
W*.AND option can be used in place of these results for the intermediate code of this example. Note that
using the logical AND of the intermediate predicate unpacking results as sources to the predicate reduction
operations is simpler than using the completely unpacked results. The other important assembly
characteristic to note for this code is that there are few data dependencies. The predicate unpacking
instructions are dependent on each other but in a tree fashion, revealing parallelism. Also, the predicate
reduction of Wg is dependent on the predicate reduction of Wf.

All of the conditional statements in the intermediate code are non-packed operations; their packed predicate
inputs will be True if all of their packed predicate bits are one and False otherwise (if one or more packed

predicate bits equal 0). This will be accomplished by choosing the AND option for the packed predicate
inputs to these conditional operations.

References

1. S. A. Mahlke, W. Y. Chen, R. A. Bringmann, R. E. Hank, W. W. Hwu, B. R. Rau, and M. S.
Schlansker, Sentinel Scheduling: A Model for Compiler-Controlled Speculative Execution, ACM
Transactions on Computer Systems, Vol. 11, No. 4, November 1993, pp. 377-408

2. S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, R. A. Bringmann, Effective Compiler Support for
Predicated Execution Using the Hyperblock,

3. M. Schlansker, V. Kathail, S. Anik, Parallelization of Control Recurrences for ILP Processors

Format: t = PADD.B/H/W/X.S/N (s1, s2) if p;

Purpose: To do integer addition on packed integer data types.

Description: The two sources are added and the result is placed in the destination register t. Source1 and source2 can be
a GPR or a CR which is specified by the 8-bit source register fields s1 and s2. The destination register can be
a GPR or CR specified by the 8-bit destination register field t. This operation is valid for byte, half-word,
word or long-word as specified by field B/H/W/X. The S/N field is used to specify saturating or not
saturating operation.

Operation: if PR(p)
t = s1 + s2;

 PADD OPERATION

OPTYPE
 0

 OPCODE SOURCE
 s1

SOURCE
 s2

 PREDICATE
 p

R SP DESTINATION
 t

 1 1 1 5 2 6 8 8 2 13 1 8 1 7

 H RSRVD
 rv rv

 PAUSE BH
WX

S/
N

Format: t = PADDL.B/H/W/X.S/N (s1, s2) if p;

Purpose: To do logical integer addition on packed integer data types.

Description: The two sources are added and the result is placed in the destination register t. Source1 and source2 can be
a GPR or a CR which is specified by the 8-bit source register fields s1 and s2. The destination register can be
a GPR or CR specified by the 8-bit destination register field t. This operation is valid for byte, half-word,
word or long-word as specified by field B/H/W/X. The S/N field is used to specify saturating or not
saturating operation.

Operation: if PR(p)
t = s1 + s2;

 PADDL OPERATION

OPTYPE
 0

 OPCODE SOURCE
 s1

SOURCE
 s2

 PREDICATE
 p

R SP DESTINATION
 t

 H RSRVD
 rv rv

 PAUSE BH
WX

S/
N

 1 1 1 5 2 6 8 8 2 13 1 8 1 7

Format: t = PSUB.B/H/W/X.S/N (s1, s2) if p;

Purpose: To do integer subtraction with carry on packed integer data types.

Description: The source s2 is subtracted from the source s1 and the result is placed in the destination register t. Source1
and source2 can be a GPR or a CR which is specified by the 8-bit source register fields s1 and s2. The
destination register can be a GPR or CR specified by the 8-bit destination register field t. This operation is
valid for byte, half-word, word or long-word as specified by field B/H/W/X. The S/N field is used to specify
saturating or not saturating operation.

Operation: if PR(p)
t = s1 - s2;

 PSUB OPERATION

OPTYPE
 0

 OPCODE SOURCE
 s1

SOURCE
 s2

 PREDICATE
 p

R SP DESTINATION
 t

 H RSRVD
 rv rv

 PAUSE BH
WX

S/
N

 1 1 1 5 2 6 8 8 2 13 1 8 1 7

Format: t = PSUBL.B/H/W/X.S/N(s1, s2) if p;

Purpose: To do logical integer subtraction on packed integer data types.

Description: The source s2 is subtracted from the source s1 and the result is placed in the destination register t. Source1
and source2 can be a GPR or a CR which is specified by the 8-bit source register fields s1 and s2. The
destination register can be a GPR or CR specified by the 8-bit destination register field t. This operation is
valid for byte, half-word, word or long-word as specified by field B/H/W/X. The S/N field is used to specify
saturating or not saturating operation.

Operation: if PR(p)
t = s1 - s2;

 PSUBL OPERATION

OPTYPE
 0

 OPCODE SOURCE
 s1

SOURCE
 s2

 PREDICATE
 p

R SP DESTINATION
 t

 H RSRVD
 rv rv

 PAUSE BH
WX

S/
N

 1 1 1 5 2 6 8 8 2 13 1 8 1 7

Format: t = PAVE.B/H/W/X (s1, s2) if p;

Purpose: To do integer average with unbiased rounding on packed integer data types.

Description: The two sources are averaged (added together and then divided by 2) and the result is placed in the
destination register t. Source1 and source2 can be a GPR or a CR which is specified by the 8-bit source
register fields s1 and s2. The destination register can be a GPR or CR specified by the 8-bit destination
register field t. This operation is valid for byte, half-word, word or long-word as specified by field B/H/W/X.

Operation: if PR(p)
t = (s1 + s2) / 2;

 PAVE OPERATION

OPTYPE
 0

 OPCODE SOURCE
 s1

SOURCE
 s2

 PREDICATE
 p

R SP DESTINATION
 t

 1 1 1 5 2 6 8 8 2 14 8 1 7

 H RSRVD
 rv rv

 PAUSE BH
WX

Format: t = PAVEL.B/H/W/X (s1, s2) if p;

Purpose: To do logical integer average with unbiased rounding on packed integer data types.

Description: The two sources are averaged (added together and then divided by 2) and the result is placed in the
destination register t. Source1 and source2 can be a GPR or a CR which is specified by the 8-bit source
register fields s1 and s2. The destination register can be a GPR or CR specified by the 8-bit destination
register field t. This operation is valid for byte, half-word, word or long-word as specified by field B/H/W/X.

Operation: if PR(p)
t = (s1 + s2) / 2;

 PAVEL OPERATION

OPTYPE
 0

 OPCODE SOURCE
 s1

SOURCE
 s2

 PREDICATE
 p

R SP DESTINATION
 t

 1 1 1 5 2 6 8 8 2 14 8 1 7

 H RSRVD
 rv rv

 PAUSE BH
WX

Format: t = PMPY.B/H/W.HI/LO (s1, s2) if p;

Purpose: To do integer multiplication on packed integer quantities.

Description: The source s1 is multiplied by source s2 and the result is placed in the destination register t. Source1 and
source2 can be a GPR or a CR which is specified by the 8-bit source register fields s1 and s2. The destination
register can be a GPR or CR specified by the 8-bit destination register field t. The HI/LO field is used to
specify which packed 16-bit quantities are used as sources. This operation is valid for byte, half-word or
 word sources as specified by field B/H/W/X. The larger results are half-word, word and long-word
respectively.

Operation: if PR(p)
t = s1 * s2;

 PMPY OPERATION

OPTYPE OPCODE SOURCE
 s1

SOURCE
 s2

 PREDICATE
 p

R SP DESTINATION
 t

 1 1 1 5 2 6 8 8 2 13 1 8 1 7

 H
rv

 PAUSE HI
L0

 RSRVD
 rv

BH
WX

Format: t = PMPYADD.B/H/W (s1, s2) if p;

Purpose: To do integer multiplication followed by addition on packed integer quantities

Description: The source s1 is multiplied by source s2 and the result is placed in the destination register t. Source1 and
source2 can be a GPR or a CR which is specified by the 8-bit source register fields s1 and s2. The destination
register can be a GPR or CR specified by the 8-bit destination register field t. This operation is valid for byte,
half-word or word sources as specified by field B/H/W/X. The larger results are half-word, word and
long-word respectively.

Operation: if PR(p)
t = s1 (*+) s2;

 PMPYADD OPERATION

OPTYPE OPCODE SOURCE
 s1

SOURCE
 s2

 PREDICATE
 p

R SP DESTINATION
 t

 1 1 1 5 2 6 8 8 2 14 8 1 7

 H
rv

 PAUSE RSRVD
 rv

BH
WX

Format: t = PCMPR.B/H/W/X.COND (s1, s2) if p;

Purpose: To compare two integer values for packed integer data types.

Description: The two sources specified by fields, s1and s2, are arithmetically compared. The comparison condition
is specified by the field, cond. The result of the comparison is stored in the GPR or CR specified by the
field destination t. Source1 and source2 can be a GPR or a CR which is specified by the 8-bit source
register fields s1 and s2. This operation is valid for byte, half-word, word or long-word operands as specified
by field B/H/W/X.

Operation: if PR(p)
t = s1 cond s2;

 PCMPR OPERATION

OPTYPE
 0

 OPCODE SOURCE
 s1

SOURCE
 s2

 PREDICATE
 p

R SP

 1 1 1 5 2 6 8 8 2 4 10 8 1 7

 H
rv

 PAUSE BH
WX

COND DEST
 t

 RESERVED
 rv

Format: t = PSHL.B/H/W/X (s1, s2) if p;

Purpose: To left shift s1 by s2 for packed integer data types.

Description: Each packed integer data quantity in source s1 is shifted left by s2 and the result is placed in the
destination register t. Source2 can be a GPR or a CR which is specified by the 8-bit source register field
s2. If field L1 is 1 then source1 is a 16-bit literal which is encoded using the second (literal) encoding.
Otherwise source1 can be a GPR or a CR which is specified by the 8-bit source register field s1. The
destination register can be a GPR or CR specified by the 8-bit destination register field t. This operation is
valid for byte, half-word, word or long-word as specified by field B/H/W/X.

Operation: if PR(p)
t = s1 << s2;

 LITERAL PSHL OPERATION

 PSHL OPERATION

OPTYPE
 0

 OPCODE SOURCE
 s1

SOURCE
 s2

 PREDICATE
 p

R SP DESTINATION
 t

 1 1 1 5 2 6 8 8 2 14 8 1 7

 H RESERVED
 rv

L1 PAUSE BH
WX

OPTYPE
 0

 OPCODE LITERAL
 s1 [0:7]

SOURCE
 s2

 PREDICATE
 p

R SP DESTINATION
 t

 1 1 1 5 2 6 8 8 2 8 6 8 1 7

 H LIT
 [8:15]

L1 PAUSE BH
WX

RSV
 rv

Format: t = PSHR.B/H/W/X (s1, s2) if p;

Purpose: To right shift s1 by s2 for packed integer data types.

Description: Each packed integer data quantity in source s1 is shifted right by s2 and the result is placed in the
destination register t. Source2 can be a GPR or a CR which is specified by the 8-bit source register field
s2. If field L1 is 1 then source1 is a 16-bit literal which is encoded using the second (literal) encoding.
Otherwise source1 can be a GPR or a CR which is specified by the 8-bit source register field s1. The
destination register can be a GPR or CR specified by the 8-bit destination register field t. This operation is
valid for byte, half-word, word or long-word as specified by field B/H/W/X.

Operation: if PR(p)
t = s1 >> s2;

 LITERAL PSHR OPERATION

 PSHR OPERATION

OPTYPE
 0

 OPCODE SOURCE
 s1

SOURCE
 s2

 PREDICATE
 p

R SP DESTINATION
 t

 H RESERVED
 rv

L1 PAUSE BH
WX

OPTYPE
 0

 OPCODE LITERAL
 s1 [0:7]

SOURCE
 s2

 PREDICATE
 p

R SP DESTINATION
 t

 H LIT
 [8:15]

L1 PAUSE BH
WX

RSV
 rv

 1 1 1 5 2 6 8 8 2 14 8 1 7

 1 1 1 5 2 6 8 8 2 8 6 8 1 7

Format: t = PSHLA.B/H/W/X (s1, s2) if p;

Purpose: To left shift s1 by arithmetic word s2 for packed integer data types.

Description: Each packed integer data quantity in source s1 is shifted left by arithmetic word s2 and the result is
placed in the destination register t. Source2 can be a GPR or a CR which is specified by the 8-bit source
register field s2. If field L1 is 1 then source1 is a 16-bit literal which is encoded using the second (literal)
encoding. Otherwise source1 can be a GPR or a CR which is specified by the 8-bit source register field s1.
The destination register can be a GPR or CR specified by the 8-bit destination register field t. This
operation is valid for byte, half-word, word or long-word as specified by field B/H/W/X.

Operation: if PR(p)
t = pshla(s1, s2);

 LITERAL PSHLA OPERATION

 PSHLA OPERATION

OPTYPE
 0

 OPCODE SOURCE
 s1

SOURCE
 s2

 PREDICATE
 p

R SP DESTINATION
 t

 H RESERVED
 rv

L1 PAUSE BH
WX

OPTYPE
 0

 OPCODE LITERAL
 s1 [0:7]

SOURCE
 s2

 PREDICATE
 p

R SP DESTINATION
 t

 H LIT
 [8:15]

L1 PAUSE BH
WX

RSV
 rv

 1 1 1 5 2 6 8 8 2 14 8 1 7

 1 1 1 5 2 6 8 8 2 8 6 8 1 7

Format: t = PSHRA.B/H/W/X (s1, s2) if p;

Purpose: To right shift s1 by arithmetic word s2 for packed integer data types.

Description: Each packed integer data quantity in source s1 is shifted right by arithmetic word s2 and the result is
placed in the destination register t. Source2 can be a GPR or a CR which is specified by the 8-bit source
register field s2. If field L1 is 1 then source1 is a 16-bit literal which is encoded using the second (literal)
encoding. Otherwise source1 can be a GPR or a CR which is specified by the 8-bit source register field s1.
The destination register can be a GPR or CR specified by the 8-bit destination register field t. This
operation is valid for byte, half-word, word or long-word as specified by field B/H/W/X.

Operation: if PR(p)
t = pshra(s1, s2);

 LITERAL PSHRA OPERATION

 PSHRA OPERATION

OPTYPE
 0

 OPCODE SOURCE
 s1

SOURCE
 s2

 PREDICATE
 p

R SP DESTINATION
 t

 H RESERVED
 rv

L1 PAUSE BH
WX

OPTYPE
 0

 OPCODE LITERAL
 s1 [0:7]

SOURCE
 s2

 PREDICATE
 p

R SP DESTINATION
 t

 H LIT
 [8:15]

L1 PAUSE BH
WX

RSV
 rv

 1 1 1 5 2 6 8 8 2 14 8 1 7

 1 1 1 5 2 6 8 8 2 8 6 8 1 7

Format: t = PACK.H/W/X (s1, s2) if p;

Purpose: To pack the contents of s1 and s2 into a packed word data type destination t. Or to further pack packed
data quantities in s1 and s2 into the next smallest packed data type destination t.

Description: The contents of GPRs or CRs as specified by the source fields s1 and s2 are packed into the GPR or CR as
specified by the field destination t. The field B/H/W/X specifies the size of the source operands: long-word
for X, packed integer word for W, or packed integer half-word for H. The destination is a packed integer
data type of next size smaller than the source operands.

Operation: if PR(p)
t = pack (s1, s2);

 PACK OPERATION

OPTYPE
 0

 OPCODE SOURCE
 s1

SOURCE
 s2

 PREDICATE
 p

R SP DESTINATION
 t

 1 1 1 5 2 6 8 8 2 14 8 1 7

 H RESERVED
 rv rv

 PAUSE BH
WX

Format: t = PACKL.H/W/X (s1, s2) if p;

Purpose: To pack the logical contents of s1 and s2 into a packed word data type destination t. Or to further pack
packed data quantities in s1 and s2 into the next smallest packed data type destination t.

Description: The contents of GPRs or CRs as specified by the source fields s1 and s2 are packed into the GPR or CR as
specified by the field destination t The field B/H/W/X specifies the type of the source operands: long-word
for X, packed integer word for W, or packed integer half-word for H. The destination is a packed integer
data type of next size smaller than the source operands.

Operation: if PR(p)
t = pack_logical (s1, s2);

 PACKL OPERATION

OPTYPE
 0

 OPCODE SOURCE
 s1

SOURCE
 s2

 PREDICATE
 p

R SP DESTINATION
 t

 H RESERVED
 rv rv

 PAUSE BH
WX

 1 1 1 5 2 6 8 8 2 14 8 1 7

Format: t = PUNPCK.B/H/W.HI/LO (s1) if p;

Purpose: To unpack the high or low packed data quantities of source s1 and place in destination t.

Description: High or low data quantities of GPR or CR specified by the source field s1 are unpacked and placed into
the GPR or CR as specified by the field destination t The field B/H/W/X specifies the type of the source
operand: packed integer word for W, packed integer half-word for H, or packed integer byte for B. The
destination is a packed integer data type of next size larger than the source operands. The HI/LO field
specifies the high-order or low-order version of the unpack instruction for unpacking the packed data
quantities in the bit ranges [63:32] and [31:0] respectively.

Operation: if PR(p)
t = punpck (s1);

 PUNPCK OPERATION

OPTYPE
 0

 OPCODE SOURCE
 s1

RSRVED
 rv

 PREDICATE
 p

R SP DESTINATION
 t

 1 1 1 5 2 6 8 8 2 13 1 8 1 7

 H RSRVED
 rv rv

 PAUSE BH
WX

HI
L0

Format: t = PUNPCKL.B/H/W.HI/LO (s1) if p;

Purpose: To unpack the logical high or low packed data quantities of source s1 and place in destination t.

Description: High or low data quantities of GPR or CR specified by the source field s1 are unpacked and placed into
the GPR or CR as specified by the field destination t The field B/H/W/X specifies the type of the source
operand: packed integer word for W, packed integer half-word for H, or packed integer byte for B. The
destination is a packed integer data type of next size larger than the source operands. The HI/LO field
specifies the high-order or low-order version of the unpack instruction for unpacking the packed data
quantities in the bit ranges [63:32] and [31:0] respectively.

Operation: if PR(p)
t = punpck_logical (s1);

 PUNPCKL OPERATION

OPTYPE
 0

 OPCODE SOURCE
 s1

RSRVED
 rv

 PREDICATE
 p

R SP DESTINATION
 t

 H RSRVED
 rv rv

 PAUSE BH
WX

HI
L0

 1 1 1 5 2 6 8 8 2 13 1 8 1 7

Format: t = PMIX.B/H/W.HI/LO (s1, s2) if p;

Purpose: To mix the data quantities of packed integer sources s1 and s2 and place in destination t.

Description: Every other quantity of the GPRs or CRs specified by the source fields s1 and s2 are mixed together and
placed into the GPR or CR as specified by the field destination t. The field B/H/W/X specifies the type of the
source and destination operands: packed integer word for W, packed integer half-word for H, or packed
integer byte for B. The HI/LO field specifies the high-order or low-order version of the mix instruction. The
high-order version of the instruction mixes every other quantity starting with the quantities in the high-order
bits. The low-order version of the instruction mixes every other quantity starting with the quantities in the
low-order bits.

Operation: if PR(p)
t = mix (s1, s2);

 PMIX OPERATION

OPTYPE
 0

 OPCODE SOURCE
 s1

SOURCE
 s2

 PREDICATE
 p

R SP DESTINATION
 t

 H RSRVED
 rv rv

 PAUSE BH
WX

HI
L0

 1 1 1 5 2 6 8 8 2 13 1 8 1 7

Format: t = PERM.B/H/W (s1) if p;

Purpose: To select any combination of data quantities from source s1 and place into destination t.

Description: Some combination of data quantities from GPR or CR specified by the source field s1 placed into the GPR
or CR as specified by the field destination t. The field B/H/W/X specifies the type of the source and
destination operands: packed integer word for W, packed integer half-word for H, or packed integer byte for
B. Fields p0, p1, … , p7 specify which combination is placed in the destination t. For packed byte p0-p7 are
used, for packed half-word p0-p3 are used and for packed word p0 and p1 are used. Pn specifies which
quantity from source s1 goes into the quantity location n of destination t. For packed byte, pn is a number
from 0-7. For packed half-word pn is a number from 0-3. For packed word pn is a either 0 or 1. Pn specifies
source quantity location and n specifies destination quantity location. Quantity 0 is defined to be in the low
order bits of both the source and destination. ** Note are not enough reserve bits to specify p0-p7 for
PERM.B **

Operation: if PR(p)
t = perm (s1);

 PERM OPERATION

OPTYPE
 0

 OPCODE SOURCE
 s1

RSRVED
 rv

 PREDICATE
 p

R SP DESTINATION
 t

 H RESERVED
not enough,
need 24 have

rv
 PAUSE BH

WX

 1 1 1 5 2 6 8 8 2 14 8 1 7

