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Abstract

The design of the memory hierarchy is crucial to the performance of high performance com-

puter systems. The incorporation of multiple levels of caches into the memory hierarchy is known

to increase the performance of high end machines but the development of architectural proto-

types of various memory hierarchy designs is costly and time consuming. In this paper, we will

describe a single pass method used in combination with trace sampling techniques to produce a

fast and accurate approach for simulating multiple sizes of caches simultaneously.

I. Introduction

The development of computer architectures through physical prototyping is no longer

a viable practice. Today, simulation is the most popular method to evaluate computer

system performance in the development stage. Trace-driven simulation techniques have

been introduced into the development process to reduce the initial investment of time

and �nancial resources in proposed system enhancements. Its use allows the researcher to

study the e�ects of the proposed enhancement in a timely, detailed manner without the

investment in hardware prototypes. Trace-driven simulation is a powerful tool that can

be used to explore the system at many di�erent levels, such as the TLB, caches, and main

memory. Yet this technique is extremely slow and sometimes ine�cient.

Trace-driven simulation and the development of tools for trace-driven simulation are very

active research areas due to their inadequate performance rates. In response to this prob-

lem, many di�erent computer architecture groups have developed approaches, such as

analytic models and novel simulation techniques, for analyzing data in an e�cient man-

ner [1],[2],[3]. Analytic cache simulation models can be constructed rather rapidly, but

they produce results of dubious accuracy. Therefore, analytic models are inappropriate

for prototyping memory systems. The analytic models, however, can be used for other

system components, such as processors, where accurate, reproducible results are not the

primary focus of the model.

The most common technique of cache simulation, functional cache simulation, simulates

the cache at the register-transfer level. Functional cache simulation of a large number of

cache designs is quite expensive and requires a large number of simulation runs. Early

work by Mattson, et al. exploited the properties of stacking replacement algorithms to

DRAFT October 9, 1997



CONTE, HIRSCH, HWU: SINGLE PASS METHODS FOR EFFICIENT CACHE SIMULATION 5

devise a single-pass cache simulation algorithm [1]. The best known member of this class

of replacement algorithms is the least-recently used algorithm [1]. This work was then ex-

tended to other cache organizations by Traiger and Slutz [4], and extended even further for

additional cache management policies by Thomson and Smith [5], and Hill and Smith [6].

At the same time, work has been done on improving the performance of functional cache

simulation for multi-megabyte caches [7]. Such techniques are based on statistical sampling

of caches, �rst proposed by Laha, et al. [8] and Stone [9]. These techniques take 30{40

contiguous stripes or clusters of address references from the trace to produce an input to

a simulation. The simulation results based on the sampled data are only approximations

of the simulation results for the entire trace yet Kessler, et al. found that these results are

highly accurate [7]. Their accuracy, however, depends on the methods used for repairing

the state of the cache at the beginning of each cluster before the simulation is applied.

Variations in these repair mechanisms produce di�erent simulation results which is known

as the state repair problem.

In this paper, we will describe a fast and accurate cache simulation technique that only

requires a single data pass while simultaneously exploring multiple sizes of cache. The

solution employs trace sampling to solve the state repair problem by exploiting the prop-

erties of inclusion that make single-pass methods possible. The single-pass method is

described in Section 2. Section 3 provides a discussion of sampling and a description

of our techniques. In addition, it includes a statistical evaluation and validation of our

techniques using simulation results for the SPECint92 benchmark suite. Lastly, there is a

discussion of the impact of these techniques on simulation performance and directions for

future research.

II. Single-Pass Simulation

The most commonly used metric in memory system studies is the miss ratio. The miss

ratio is the ratio of the number of references that are not satis�ed (i.e., a miss) by a cache

at a level of the memory system hierarchy to the total number of references made at that

level. The miss ratio is characteristic of the workload (e.g., the memory trace) yet it is

also independent of the memory access time of the requested elements. A given miss ratio

can be used to decide whether a potential memory element design will meet the required
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access time for the memory system [10]. The recurrence/conict model proposed by Hwu

and Conte [11] calculates the miss ratios for a range of cache con�gurations on a single

pass. In the ideal case of an in�nite cache, the miss ratio may be expressed as,

� =
N �R

N
; (1)

where R is the total number of recurrences and N is the total number of references.

Conicts cause non-ideal behavior. A dimensional conict is de�ned as an event which

converts a recurrence into a miss that is due to limited cache capacity or mapping inexi-

bility. The following formula can be used for deriving cache miss ratio, �, for a given trace

and cache dimension:

� =
N � (R�D)

N
; (2)

where D is the total number of dimensional conicts. (For the example, � = (8�(4�2))=8

= 0:75.) This is a general recurrence/conict model that can be extended to account for

other e�ects and in this paper, we adapt this model for statistical sampling of the trace.

A. Reference streams and cache dimensions

A formal abstraction of a benchmark's trace is termed a reference stream. This is a

sequence of references to addresses, w(k), of length N (0 � k < N). When required,

the addresses are represented by lower-case Greek letters, such as �; �; . Note that a

reference at w(k) occurs later than w(k � 1) in time, but the parameter k does not take

into account the di�erence in service times between cache hits and cache misses, so it does

not represent parameterized time. For this reason, k is referred to as the reference count.

The dimension of a cache is expressed using the notation, (C;B; S), for a cache of size

2C bytes, with a block size of 2B bytes, and 2S blocks contained in each associativity set.

The term set size is de�ned as the associativity level, or the number of blocks per set.

Cache size is the total number of bytes per cache and block size has been called line size

elsewhere [12]. It should be noted that this notation requires C � B + S. The notation

(C;B;1) is an abbreviation for the dimension of a fully-associative cache (S = C �B).

All caches are assumed to use Least Recently Used (LRU) replacement and map addresses

into sets using bit selection [6].
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It is useful to partition the reference stream by setting the block o�set portion of all

addresses in the stream to zero. This produces a block reference stream, wB(k), is de�ned

such that,

wB(k) = 2B
$
w(k)

2B

%
:

In binary, this is equivalent to setting the least-signi�cant B bits to zero.

B. Least recently used (LRU) stack operation

LRU stacks were �rst introduced by Mattson, et al. in [1] as a way to model the behavior

of paging systems. An LRU stack operates as follows: when an address, wB(k) = �, is

encountered in the block reference stream, the LRU stack is checked to see if � is present

on the stack. If � is not present, it is pushed onto the stack. However, if � is present (e.g,

it is a recurring reference), it is removed from the stack, then repushed onto the stack.

This stack maintenance policy is speci�c to a particular block size, as is the discussion

below.

A stack is represented as SB(k), maintained for a block size B at time k. The ith ordered

item of SB(k) is expressed as, SB(k)[i]. The stack may also be expressed as an ordered

list, such that SB(k) = fSB(k)[0]; SB(k)[1]; : : : ; SB(k)[m]g, where m is the depth of the

stack. The following operations are de�ned for a stack:

the push(�) function,

push(SB(k); �) =
n
�; SB(k)[0]; SB(k)[1]; : : : ; SB(k)[m]

o
;

the �(�) function,

�(SB(k); �) = i; if SB(k)[i] = �;

and, the repush(�) function,

repush(SB(k); �) =
n
�; SB(k)[0]; SB(k)[1]; : : : ; SB(k)[�(SB(k); �) � 1];

SB(k)[�(SB(k); �) + 1]; : : : ; SB(k)[m]
o
:

�(SB(k); �) and repush(SB(k); �) are unde�ned when � 62 SB(k). When SB(k) and � are

understood, it is convenient to use� = �(SB(k); �). Note that push(�) and repush(�) are
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de�ned as side-e�ect-free functions rather than procedures. This is to remove dependence

on the reference count variable, k.

For an address � = wB(k), the least recently used (LRU) management policy for a stack is

shown in Figure 1. In Step 1.1, the references between the top of stack and the recurring

reference have been referred to as the set � = f�i j �i = SB(k�1)[i]; 0 � i ��g. Figure 1

1. if � 2 SB(k � 1) then

1.1 determine D from �

1.2 SB(k) repush(SB(k � 1); �),

2. else SB(k) push(SB(k � 1); �)

3. N  N + 1

Fig. 1. The least recently used management policy for a stack, SB (k) (adapted from Mattson et al.).

is applied to � = wB(k) for all k. The LRU policy is essentially a de�nition for calculating

SB(k) from SB(k � 1) and �. In most situations, SB(k) is calculated in order to obtain

other statistics, such as the stack depth distribution.

III. Statistical Sampling of Address Traces

Trace-driven cache simulation produces an enormous amount of data so it is important to

develop methods that accurately and e�ciently summarize the performance results into

a small set of statistics. The most common performance statistic for cache simulations is

the miss ratio. The miss ratio is an arithmetic average over time that can be accurately

predicted by statistically sampling the trace [8], [7]. Previously, statistical sampling has

been applied to functional cache simulation. Our extension applies statistical sampling to

the single pass techniques.

A. De�nition of sampling

Consider a reference stream, wB(k). Statistical sampling takes NS clusters of length LS

from this trace. Note that each sample is a contiguous block of LS references. Typical
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values for NS are 40 samples and typical values for LS are in the range of 100,000 ref-

erences [8],[7]. The removed references between two samples comprise a sample gap. In

order to reduce sampling bias, the gap size is a uniformly distributed random number with

a mean of L̂G. Without loss of generality, it is assumed that LG is a constant and that

the samples are applied to the cache simulator in the order they are taken from the trace.

Yet, the state of the cache is unknown between each sample, so the cache state must be

repaired between the application of each sample.

In the following discussion, the actual miss ratio is denoted � and the miss ratio estimated

by sampling is denoted �0. This convention is used for the components of the miss ratio,

R[B], D[C;B; S] and N . The sampled miss ratio is, therefore,

�0 =
N 0 � (R0[B]�D0[C;B; S])

N 0
: (3)

There are several ways of measuring the error between � and �0. The percentage change,

or relative error, can be calculated as RE(�) = j� � �0j=�. The use of relative error in

conjunction with miss ratios may inate di�erences between � and �0. These di�erences,

however, would not normally matter to a designer. Designers typically pick a target miss

ratio value and accept any design that satis�es that value [13]. In particular, a cache with

a miss ratio of � = 0:01% is as acceptable for a design as a cache with a sampled miss

ratio of �0 = 0:005%, since both values are very small. However, the relative error between

these values is RE = 50%. Therefore relative error is appropriate for large values of the

miss ratio and is less signi�cant for smaller values. This suggests that an error measure,

such as the absolute miss ratio error, AE(�) = j���0j, that is weighted by the actual miss

ratio would better characterize the impact of the di�erence.

B. State repair techniques

The accuracy of functional cache simulation techniques that employ statistical sampling

of address traces depends on the method used for repairing that state of the cache at

the beginning of each sample. This is better known as the state repair problem. Several

approaches have been proposed for functional cache simulation [8],[14],[9],[7]. This section

presents two approaches to this problem. The �rst, the �ll-ush technique, is an adaptation

of Stone's approach [9] to the single-pass technique. The second method, the no-state-
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loss technique, applies a new approach to the single-pass technique. The two single-pass

approaches to state repair are compared using empirical simulation results based on the

SPECint92 benchmark suite.

The �ll-ush approaches to state repair entail removal of all unknown unique references

from the trace [9]. To apply this approach to single-pass simulation, the recurrence/conict

single-pass method is extended to measure the number of references whose states are

unknown due to the lost state between samples. It is traditional to term these references,

�ll references [9]. Let F [B] be the count of �ll references for block size B, LS be the cluster

size, and LG be the gap size. In the adapted algorithm, the cache is ushed between each

cluster and F [B] is collected. References with unknown state are removed from calculation

of the miss ratio by using Equation (4):

� =
N � (R[B]�D[C;B; S])

N � F [B]
: (4)

Figure 2 shows the recurrence/conict single-pass algorithm modi�ed for this form of

sampling. The ushing of the LRU stack is represented as \SB(0)  ;" (Step 1.1 of

Figure 2). Step 1.2.1 shows the sequential removal of the sampled references from the

reference stream, wB. Step 1.2.1 is not required if the samples could be written to disk or

consumed in-process because the reference stream, wB is not stored.

Typical values for AE are presented in Figures 3{4 for direct-mapped and fully associative

caches with cluster sizes of LS = 100; 000 references. From these results, it can be seen

that AE decreases as the cache size increases, however, large cache sizes have a small

constant error due to the fact that the �ll references can potentially contain �rst-time

references to locations. When C is increased to the point where D[C;B; S] = 0, then,

�(C su�ciently large) = (N �R[B])=N: (5)

However,

R[B] = R0[B] + fr � F [B]; (6)

where fr is the fraction of �ll references that recur. The fraction fr can only be known

by measuring the entire trace since the status of �ll references is unknown due to state

loss. If all �ll references are assumed to be recurrences, this e�ectively sets fr = 1, which
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1. for i 0 to NS � 1

1.1 SB(0) ;

1.2 for j  0 to LS

1.2.1 � wB(i� (LS + LG) + j)

1.2.2 if � 2 SB(j � 1) then

1.2.2.1 do recurrence(�;�)

1.2.2.2 SB(j) repush(SB(j � 1); �),

1.2.3 else

1.2.3.1 SB(j) push(SB(j � 1); �)

1.2.3.2 F [B] F [B] + 1

1.2.4 N  N + 1

Fig. 2. Extension of the recurrence/conict single-pass algorithm to sampling using �ll-ush state repair.
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Fig. 3. Absolute error for �ll-ush, direct-mapped caches, LS = 100; 000.
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results in the constant error observed in the �gures. The ratio of sample simulation time

for the full-ush approach to the non-sampled approach (i.e., using the full trace) for the

SPECint92 benchmark suite is presented in Figure 5. This ratio can be thought of as the

speedup of the sampling approach. As expected, small sample sizes usually obtain a higher

speedup over large sample sizes in the �gure since sampled traces with smaller sample sizes

are smaller and produce less work for the simulator.

There are several other approaches to state repair that can collectively be termed cache

warm-up approaches. In these approaches, calculations of performance metrics are delayed

for each sample until the cache contents are stable, or \warmed up." This warm-up state

is speci�ed by some criterion, where the criterion may vary based on the approach. One

possible warm-up criterion is to use a fraction of the sample to prime the cache and then

record recurrences and conicts for the second half of the sample. This approach might

work well for small caches using functional simulation. It does not, however, perform well

for single-pass methods or for larger caches using functional simulation [14] [7]. Several

other possible warm-up criteria are

1. Delay calculation of performance metrics for each set in the cache until each set is

�lled with references [14],

2. Rede�ne the miss ratio in terms of the lifetime of references and measure expected

lifetime length [7].

Method 1 is not applicable to single-pass cache simulation because the state of every as-

sociativity set in every possible cache dimension is not kept. If the state was kept, the

maintenance of this information would be equivalent to the maintenance of state informa-

tion for functional simulation, and the algorithm would reduce to functional simulation.

Method 2 also requires maintenance of additional state information. The lifetime of a

reference is de�ned as the period of time a reference is needed in the LRU stack. In this

case, method 2 maintains the lifetime of each reference in the LRU stack. Lifetime is

speci�c to a particular cache con�guration and this method has similar problems to the

�rst when large data structures are considered. Instead of using this second method to

extend single-pass methods to achieve lower AE than the �ll-ush techniques, an approach

that avoids the problem of state repair entirely is possible.
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Fig. 5. Speedup of �ll-ush approach over no sampling for SPECint92 benchmark suite .
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There are several styles of trace collection. One style uses a `store and forward' approach

where the trace is collected, written to disk, then later used for simulation. A drawback

of this approach is the required disk space for long-running benchmarks. Another style

is `on-the-y' simulation that consumes the trace as the trace is being generated. In a

situation where on-the-y simulation is being used, the entire trace is available even if

sampling is occurring at the input to the cache simulator. Yet, it is possible to make use

of these excluded references. In this approach, statistical sampling is used for the conict

metrics only and R[B] and N are recorded for the whole trace. The miss ratio is then

calculated as follows,

� = 1�
R[B]

N
�
D0[C;B; S]

NSLS
: (7)

The power of this approach is twofold. First, if the simpler algorithm exploits a hash table

or similar search method for stack blocks, it can be made to run much faster than the

more complicated basic single{pass algorithm. Secondly, it is known whether any reference

recurs for all references inside the sample because the stack is maintained. Therefore,

the state of all references is known, so this approach is termed a no-state-loss sampling

technique.

The modi�ed sampling algorithm is shown in Figure 6, where the predicate sampling tests

if reference � = wB(k) falls inside a sample. To demonstrate the accuracy of the approach,

1. if � 2 SB(k � 1) then

1.1 if sampling(k) then do recurrence(�;�)

1.2 SB(k) repush(SB(k � 1); �),

2. else SB(k) push(SB(k � 1); �)

3 if sampling(k) then N  N + 1

Fig. 6. A no-state-loss approach to extending a single-pass cache simulation algorithm for sampling.

the absolute errors are presented in Figures 7{8.

Comparison of Figures 7{8 to Figures 3{4 reveals several advantages of the no-state-loss

approach over the �ll-ush approach:
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Fig. 8. Absolute error for no-state-loss, fully associative caches, LS = 100; 000.
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1. In general, the error for no-state-loss is less than 50% of the error of �ll-ush �.

2. A constant error for large caches (C > 20, empirically) is observed for �ll-ush while

the error in the case of no-state-loss is close to zero.

Both of the advantages can be attributed to the full-trace measurement of R[B]. In

particular, the second advantage is a direct result of Equations (5) and (6) because fr

is known for no-state-loss. The no-state-loss technique processes all references to some
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Fig. 9. Speedup of no-state-loss approach over no sampling for SPECint92 benchmark suites .

extent, so it is not as fast as other simple sampling techniques, such as the �ll-ush

approach. Figure 9 shows the speedup of no-state-loss over full-trace simulation for the

SPECint92 benchmarks. Comparison of Figure 9 to Figure 5 reveals that no-state-loss

sampling is approximately 2-3 times slower than �ll-ush sampling. Therefore, the �ll-

ush method might be preferable when the execution time of a benchmark is extremely

long. Yet, if the accuracy of the results is considered, the �ll-ush method produces larger

error bounds for medium-sized caches. Thus the �ll-ush approach should not be used for

the prototyping of �rst-level cache designs due to their relative sizes. The no-state-loss

approach, however, produces higher accuracy than the �ll-ush approach for all cache sizes

and should be used in the case where accuracy is important.
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TABLE I

Percentage of Trace Sampled

Benchmark Percentage

compress 16.5

eqntott 0.6

espresso 1.7

gcc 15.3

li 0.3

sc 1.0

IV. Conclusions

Trace-driven simulation is a simple way of evaluating memory hierarchies with varying

hardware parameters. But to evaluate real world workloads, simulating a few million ad-

dresses is not adequate and a very large scale simulation is still costly [8]. In this paper, we

presented two single-pass methods that address this e�ciency problem. Both techniques

use statistical sampling of address traces in combination with the single-pass methods,

produce accurate results using a relatively small number of samples and provide excel-

lent speedup over no sampling. The �rst technique, �ll-ush, is an e�cient adaptation of

functional cache simulation techniques. While the new technique, the no-state-loss tech-

nique, exploits the properties of the single-pass method to achieve very accurate results.

However, there exists a tradeo� between speed of evaluation and accuracy. The simu-

lation time using the no-state-loss technique is approximately 2-3 times longer than the

equivalent simulation time using the �ll-ush method. However, the no-state-loss method

produces very accurate results. In fact, this method produced perfect accuracy for large

caches and is twice as accurate for smaller caches than the �ll-ush approach. Addition-

ally, the no-state-loss technique, unlike other sampling approaches, does maintain a stack

between samples so it can be used for other extensions, such as the multiprogramming

extension [15].
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