
July–September 1998 13

Subword extensions for video
processing on mobile systems
Matthew D. Jennings and Thomas M. Conte
North Carolina State University

William H. Mangione-Smith
Mobile Computing Editor
UCLA
Billms@ucla.edu

PROVIDING VIDEO-OVER-WIRELESS capability to
mobile-computing platforms results in several interesting chal-
lenges. Wireless networks provide less transmission bandwidth
than hard-wired networks. Because today’s wireless local-area-
network technology can provide only around 2-Mbps trans-
mission rates, video compression is essential for transmitting
to mobile devices. Due to increased user sensitivity to cost and
power consumption, mobile-computing platforms prefer a
host-processor-only solution, opposed to a host processor in
conjunction with a digital-signal processor. Most general-pur-
pose microprocessor architectures have recently extended their
instruction-set architectures to include parallel instructions
for improved performance on multimedia applications, includ-
ing MPEG (Motion Pictures Expert Group) video.

This essay will highlight the features of several of these
extended ISAs for processing MPEG video. Each uses a mod-
ified single-instruction, multiple-data execution model as a
technique to enable concurrent execution.1 In the modified
micro-SIMD execution model, a single instruction initiates par-
allel execution on data organized in parallel. Figure 1 illus-
trates the micro-SIMD execution of an add instruction.

Micro-SIMD execution using packed data types (with byte,
half-word, or word quantities) makes more efficient use of the
processor data path for 64- or 128-bit architectures. We’ll refer
to this particular form of micro-SIMD execution as subword
execution.

MPEG video

The necessity to compress and encode video for reasonable
transmission bandwidth requirements, and the corresponding
computation required to decode a compressed video data
stream, make video processing a compute-intensive mobile
application. The MPEG standard for video compression
receives the most attention as a video standard for multime-
dia systems.2,3 While we do not intend to discuss the MPEG
standard in detail here, we do want to touch on MPEG-1 and
MPEG-2 to illustrate computational requirements.

The MPEG-1 video-coding scheme is a lossy compression

one that has been optimized for coding video for digital-storage
media, at rates of 1 to 1.5 Mbps. This range of rates is appropri-
ate for transmitting data over a high-speed wireless LAN. Pic-
ture quality using MPEG-1 can be better than with analog
VHS. MPEG consists of both intraframe- and interframe-cod-
ing techniques. The intraframe (I-frame) coding uses block-
based discrete-cosine transform, quantization, and Huffman
encoding for lossy compression. I-frame coding capitalizes on
spatial redundancy in an individual frame to compress that
frame. I-frame compression’s lossy nature results from the
quantization step; DCT and Huffman encoding are lossless
(excluding precision losses for (I-)DCT).

Because the compression obtained from I-frame encoding
cannot support video in the 1- to 1.5-Mbps range, the MPEG
scheme also uses interframe encoding. Interframe encoding
exploits temporal redundancy between frames, using a motion-
estimation and motion-compensation technique. There are
two interframe types, predicted interframes or bidirectionally pre-
dicted interframes. MPEG encodes P frames using motion-com-
pensated predictions from past I or P frames. It encodes B
frames using interpolated predictions from both past and future
I or P frames. The compression for P frames is better than with
I frames, while B frames provide the highest degree of com-
pression. MPEG allows any sequence of I, P, and B frames.

Mobile Computing

a3 a2

Micro-SIMD instruction ADD R3 R1 + R2 results
in the parallel execution of additions:

a1 a0

+ + + +

R1

b3 b2 b1 b0

= = = =

R2

(a3+b3) (a2+b2) (a1+b1) (a0+b0)R3

Figure 1. Micro-SIMD execution for an add instruction.

Figure 2 illustrates a sequence of frames and the interdepen-
dence among I, P, and B frames.

MPEG uses 8 × 8 blocks of pixels for its block-based (I-)DCT.
Block sizes for motion-compensation is larger, at 16 ×16, and we
call these blocks macro blocks. The larger macro block size repre-
sents a tradeoff between the compression provided by motion
compensation and the cost associated with transmitting motion
vectors.

MPEG-1 standardizes both video encoding and decoding.
Figure 3a shows the encoder’s block diagram. The important
computational kernels for providing encoding on a host
processor that supports subword ISA extensions are DCT and
I-DCT, quantization and inverse quantization, motion esti-
mation, motion compensation, and Huffman encoding. Figure
3b shows a decoder block diagram. The important computa-
tional kernels for providing decoding are Huffman decoding,
inverse quantization, I-DCT, and motion compensation.

It is easier to interpolate P and B frames from the motion vec-
tors during decoding than it is to calculate the motion vectors
using motion estimation and motion compensation during
encoding. This unbalanced encoding/decoding process limits
MPEG-1’s usefulness for video conferencing because real-time
encoding is more difficult than real-time decoding. Decode will
be a more important feature of a mobile multimedia system than
encode, as typical use will be for video playback.

Similar to MPEG-1, MPEG-2 is a lossy video-compression
scheme based on DCT coding, block-based motion-compen-
sation, predictive and interpolative interframe coding, and
Huffman coding. MPEG-2 is backward compatible with
MPEG-1. Compared to MPEG-1, MPEG-2

• supports interlaced pictures,
• supports more color subsampling formats,
• supports more prediction modes for motion compensation,
• allows for more quantization matrices (and therefore more

efficient encodings), and
• offers performance improvements because of scalability.

The enhancements for MPEG-2 do not change the nature
of computations when compared with MPEG-1, except that
MPEG-2 targets data rates in the range of 4 Mbps (for broad-
cast-quality TV) to 9 Mbps (for near-studio-quality video).
These data rates are high for transmission over today’s wire-
less LAN technology. The scalability improvement allows for
robustness when portions of the bitstream are lost because it
allows for progressive video-stream encoding. This feature can
improve picture quality in the presence of higher bit-error
rates inherent to wireless LAN networks. It is possible to use

the scalability feature of MPEG-2 while maintaining data rates
closer to the target MPEG-1 rates by having a higher mix of
P and B frames than intended for MPEG-2. Correspondingly,
MPEG-2 obtains higher picture quality by having a richer mix
of I frames, which can operate in the presence of faster wire-
less networks.

Subword ISA extensions are appropriate for MPEG process-
ing because pixel quantities are the main elements of computa-
tion. Important architectural features include subword versions
of multiply-accumulate, multiply-add, or shift-add for
(I-)DCT. Shift-add, or multiplication by constant values, can
substitute for multiply-accumulate or multiply-add for
certain (I-)DCT algorithms. Sum of accumulated differences is
an essential calculation for motion-estimation. The UltraSparc
with VIS has added a special-purpose instruction to perform
SAD computations. Subword shift operations will be useful for
performing Huffman decoding.

Subword ISA extensions to general-
purpose processors
Six modern microprocessors have implemented multimedia
extensions to their architectures.4–10 Although all of these
extensions are based on subword execution, key distinctions
between them are in the breadth and complexity of operations
added, the use of integer or floating-point registers for new
packed-data types, and compatibility issues.

MULTIMEDIA ACCELERATION EXTENSIONS (MAX)
The multimedia extensions found in the PA-RISC 2.0 archi-
tecture4 (MAX-2) are second-generation multimedia exten-
sions for HP, following MAX-1 found in the PA-7100LC
microprocessor. With both MAX-1 and MAX-2, HP takes a
minimalist approach to multimedia extensions. MAX-1
included only subword versions of add, subtract, shift left
& add, shift right & add, and average for 16-bit data. Shift
left & add and shift right & add are used for multiplying
by integer and fractional constants, respectively. This allows for
the most common form of multiplication for video processing
used in (I-)DCT.

MAX-2, implemented in the PA-8000 processor, also intro-
duces parallel shifts for data alignment and the data-conver-
sion instructions mix and permute. The mix instruction mixes
every other quantity of a packed data-type source register with
the corresponding quantity from the second source register.
The permute instruction has one packed data-type source and
allows for any permutation of the source quantities in the
packed data-type destination.

The MAX-2 extensions continue to support only subword
execution on packed half-word (16-bit) data types. Packed byte
(8-bit) versions were rejected for insufficient precision (even for
pixel calculations) and packed word (32-bit) versions were
rejected for insufficient parallelism. Using shift & add

required a minor modification to an existing preshifter in the
integer arithmetic lookup unit, rather than a new integer mul-

14 IEEE Concurrency

I B P B B P B I

Figure 2. Example of interdependence among I, P, and
B frames in a video sequence.

tiplier functional unit, while maintaining a one-cycle latency
for all integer ALU operations. MAX-2 utilizes integer regis-
ters, thereby permitting the use of existing operations for 64-
bit logical operations and 64-bit shift operations. Ruby Lee’s
article in IEEE Micro4 provides many short coding examples
using MAX-2 for more complex functionality, justifying the
absence of more complex operations. MAX-2 required less
than 0.1% of the PA-8000 silicon area.

MATRIX MATH EXTENSIONS (MMX)
For the MMX extensions to the Intel Architecture (x86),5,6

the key challenges were retaining full compatibility and not
introducing new architectural states (such as additional con-
trol register or condition codes). MMX instructions alias the
floating-point registers, both for compatibility and because
of the small number of integer registers. MMX achieves full
compatibility with existing operating systems and applications
by using the existing x86 floating-point state as temporary
storage for MMX data.

MMX has some additional functionality over MAX-2,
including parallel versions of multiply, multiply-add, com-
parisons, and the data-conversion instructions pack and
unpack. The pack and unpack instructions allow for conver-
sion between packed data types. Because MMX instructions
are aliased to the floating-point registers, MMX includes bit-
wise logical and move instructions, because integer counter-
parts could not be leveraged in the floating-point unit. The
move instruction allows for the loading of data from memory
or the transfer of data from the integer registers. A special
instruction must maintain compatibility when switching
between MMX execution and floating-point execution modes.

MMX provides subword instructions for 8-, 16-, and 32-bit
quantities, but supports subword multiply and multiply-
add only for 16-bit quantities. MMX includes a limited set of
bit-wise logical operations.

3DNOW!
The 3DNow! extensions to AMD’s K6 architecture9 are a
superset of the MMX instructions that include subword ver-
sions of single-precision (32-bit) floating-point operations,
allowing two single-precision quantities to execute in parallel
for each 64-bit operation. While the floating-point additions
are more applicable to 3D graphics and image rendering, float-
ing-point capability can also provide more accuracy for (I-
)DCT and, therefore, better-quality MPEG video. In addi-
tion, 3DNow! provides an integer subword average instruction
to facilitate motion compensation and also includes data-
prefetch instructions. As with MMX, the 3DNow! extensions
also alias the floating-point registers for compatibility.

VISUAL INSTRUCTION SET (VIS)
The VIS extensions to the UltraSparc architecture are distin-
guished from MAX and MMX by including several instruc-
tions with higher complexity.7 These include an instruction
for pixel-distance calculation, useful for motion estimation,

and block load/store instructions (others are not covered here
because they are not applicable to MPEG video). Like MMX,
the VIS extensions use existing floating-point registers.

The pdist (pixel-distance calculation) instruction computes
the absolute difference between corresponding 8-bit compo-
nents in a pair of packed byte registers and accumulates the
error values. This instruction targets a predominant compu-
tation, the sum of accumulated differences, in motion estima-
tion for MPEG video or video-conferencing protocols.

Block load-and-store instructions transfer 64-byte blocks
between memory and a group of eight consecutive registers.
These accesses do not cause allocations in the caches on a miss,
which lets the processor move large amounts of data that are
touched only once without displacing useful data from the
caches. This is useful for MPEG because streaming video data
does not benefit from caching and can destroy useful cache
data.

ALTIVEC
With the AltiVec extensions, the PowerPC architecture10 now
includes a 128-bit vector execution unit, operating concur-
rently with the integer and floating-point units. AltiVec
includes subword versions of integer (byte, half-word, word)
and floating-point (single-precision) operations. Because a new
execution unit is used, no existing register resources, execu-
tion resources, or opcodes could be leveraged, resulting in
many additional operations. AltiVec introduces 162 new
instructions covering arithmetic, compare, logical, shift/rotate,
rounding/conversion, load/store, formatting, prefetch, and
processor-control operations.

MIPS DIGITAL MEDIA EXTENSIONS (MDMX)
Most significantly, the MDMX extensions8 include a 192-bit
accumulator and a multiply-accumulate instruction. Most
DSP architectures include a multiply-accumulate instruc-
tion. The multiply-accumulate instruction works on packed
byte or packed half-word source quantities with 3X precision
for corresponding accumulator quantities. For example, a mul-

July–September 1998 15

Frame
buffer

Video
input

DCT

MPEG
output

Motion
vectors

Quantization

Inverse
quantization

I-DCT

Huffman
encoding

Motion
estimation

Motion
compensation

+
+

–

(a)

Huffman
decoding

MPEG
input

Video
outputInverse

quantization
I-DCT

Motion
vectors Motion

compensation

+

(b)

Figure 3. MPEG block diagrams: (a) encoder and (b)
decoder.

tiply-accumulate operation on 8-bit quantities has
eight results of 24-bit precision for a total of 192 bits.
Having a wide accumulator register saves the 2X, or
even 4X, parallelism factor lost by having to unpack
to a larger data type before performing a subword
multiply-accumulate. This greater accuracy helps
in the implementation of IEEE-compliant (I-)DCT.
It negates the need of a special SAD instruction for
motion estimation by enabling the higher-precision
sum-of-difference-squared computation. MDMX also
include a comprehensive set of other subword operations,
including add, sub, logical ops, shift, min, max, satura-
tion, permuting, and comparing. In addition, the MIPS V
architecture added paired single-precision subword floating-
point operations. MDMX uses floating-point registers for
holding subword data types.

Table 1 summarizes key aspects for the subword extensions
to host general-purpose processors.

EACH VERSION OF SUBWORD EXTENSIONS to host
general-purpose processors we’ve discussed includes important
features for processing MPEG video. Excluding a couple of
examples of special-purpose instructions for motion estimation
and motion compensation, they all provide similar capabilities
for the integer subword computations important to processing
MPEG video. Because of microarchitectural support for pixel-
distance calculations and block loads and stores, the VIS exten-
sions should have an advantage over the other implementations.
The more recent entries include floating-point subword capa-
bilities, and more are expected to follow soon, including MMX-
2. It is not clear that subword floating-point support will affect
MPEG processing, because floating-point (I-)DCT algorithms
are more computationally expensive.

Despite the similarities, each approach to subword exten-
sions is unique. It is interesting to differentiate the overall
approaches for supporting these multimedia extensions. Key
differences include the amount of additional hardware re-
quired, ranging from MAX-2, which leverages integer regis-
ters and execution units for virtually no additional hardware,
to AltiVec, which requires an entirely new execution unit. The
others alias floating-point hardware, which simplifies com-
patibility but doesn’t allow simultaneous subword and float-
ing-point execution. Special-purpose instructions, such as
those included in VIS, may have cycle-time implications for
future implementations. The verdict is still out on which
implementation will provide the right balance of cost, usabil-
ity, and performance. All of the approaches will cut costs for
mobile-computing platforms because additional DSP hard-
ware requirements can be removed.

REFERENCES

1. M.J. Flynn, “Very High-Speed Computing Systems,” Proc.
IEEE, IEEE Press, Piscataway, N.J., Vol. 54, No. 12, Dec.
1966, pp. 1901–1909.

2. V. Bhaskaran and K. Konstantinides, “Image and Video
Compression Standards Algorithms and Architectures,”
Kluwer Academic Publishers, Dordrecht, The Netherlands,
1995, pp. 161–194.

3. R. Aravind et al., “Image and Video Coding Standards,”
AT&T Technical J., Jan./Feb. 1993, pp. 58–79

4. R.B. Lee, “Subword Parallelism with MAX-2,” IEEE Micro,
Vol. 16, No. 4, Aug. 1996, pp. 51–59.

5. A. Peleg and U. Weiser, “MMX Technology Extension to
the Intel Architecture,” IEEE Micro, Vol. 16, No. 4, Aug.
1996, pp. 42–50.

6. A. Peleg, S. Wilkie, and U. Weiser, “Intel MMX for Multi-
media PCs,” Comm. ACM, Vol. 40, No. 1, Jan. 1997, pp.
25–38

7. M. Tremblay et al., “VIS Speeds New Media Processing,”
IEEE Micro, Vol. 16, No. 4, Aug. 1996, pp. 10–20.

8. “MIPS Digital Media Extension,” Instruction Set Architecture
Specification, http://www.mips.com/MDMXspec.ps (current
July 29, 1998).

9. “AMD-3DNow! Technology Manual,” Instruction Set Archi-
tecture Specification, http://www.amd.com/K6/k6docs/pdf/
21928c.pdf (current July 29, 1998)

10. “AltiVec Technology Programming Environments Manual,”
Instruction Set Architecture Specification, http://www.mot.com/
SPS/PowerPC/teksupport/teklibrary/manuals/altivec_pem.p
df (current July 29, 1998).

Matthew D. Jennings is a PhD student in computer engineering at
North Carolina State University in Raleigh (Research Triangle Park).
His research interests are in microarchitectural and compiler support
for multimedia applications and static scheduling for instruction-level
parallelism. He received his BS in electrical engineering from the Uni-
versity of Minnesota and his MS in computer engineering from NC
State University. He is a member of IEEE. Contact him at Dept. of
ECE, Box 7911, North Carolina State Univ., Raleigh, NC 27695-
7911; mdjennin@eos.ncsu.edu.

Thomas M. Conte is an associate professor of electrical and com-
puter engineering at North Carolina State University in Raleigh
(Research Triangle Park). He received his PhD from the University
of Illinois in 1992. His research interests include microarchitecture
and performance evaluation. Conte is chair of the IEEE Computer
Society Technical Committee on Microprogramming and Microar-
chitecture. He is the recipient of an NSF Career award and the IBM
T.J. Watson Partnership Award for Faculty Development. Contact
him at the Engineering Graduate Research Center, Box 7914, North
Carolina State Univ., Raleigh, NC 27695-7914; conte@ncsu.edu.

16 IEEE Concurrency

Table 1. Subword extensions feature list.

SUBWORD OP CLASS MAX-2 MMX 3DNOW VIS ALTIVEC MDMX

Integer arithmetic,
logical, shift Yes Yes Yes Yes Yes Yes

Multiply-add No Yes Yes Yes Yes No
Shift-add Yes No No No No No
Multiply-accumulate
192-bit accumulator No No No No No Yes
Floating-point

arithmetic No No Yes No Yes Yes
Special purpose ops:

pixel distance, No No No Yes No No
block load/store,
array, partial store

