
0018-9162/97/$10.00 © 1997 IEEE December 1997 33

Challenges to Combining
General-Purpose
and Multimedia
Processors

M
ultimedia workloads have always held
an important role in embedded applica-
tions, such as video cards or set-top
boxes, but these workloads are becom-
ing increasingly common in general-

purpose computing as well. Over the past three years
the major vendors of general-purpose processors
(GPPs) have announced extensions to their instruc-
tion set architectures that supposedly enhance the per-
formance of multimedia workloads. These include
MAX-2 extensions to Hewlett-Packard PA-RISC,1

MMX for Intel’s x86,2,3 UltraSparc’s VIS,4 and
MDMX extensions to MIPS V.5

Processors targeted to embedded multimedia appli-
cations—the so-called multimedia processors
(MMPs)—have employed similar semantics. These
processors include Philip’s TriMedia (TM-1),6

Samsung’s Multi-Media Signal Processor (MSP),7 and
Chromatic’s Mpact.8 In addition, some MMPs incor-
porate multimedia-specific semantics, including
vector instructions (MSP and Mpact); a very-long-
instruction-word architecture (TM-1 and Mpact); and
hardwired special-purpose hardware such as video and
audio ports and bitstream codecs.9

Most of the new instruction semantics for both GPPs
and MMPs are based on a subword execution model.
This model uses the entire width of a processor data
path (32 or 64 bits), even when processing the small
native data types found in signal processing (8- or 12-
bit pixel, 8- or 16-bit audio). For example, if the word
size of a machine is 64 bits, the adder can be used to
implement eight 8-bit additions in parallel (by, for exam-
ple, disconnecting the carry chain in the adder at every
eighth position). The same trick can be used to operate
in parallel on four 16-bit data types or on two 32-bit
data types (for more detail see the sidebar, “Instruction
Set Architecture Semantics for Media Processing.”)

Merging these new multimedia instructions with
existing GPPs poses several challenges. Also, some
doubt remains as to whether multimedia extensions
are a real development or just a competition-induced

fad in the GPP industry. If it is indeed a development,
how must current processor microarchitectures change
in reaction? And if they change, can GPPs and MMPs
apply application-specific integrated circuit (ASIC)
solutions to the same problems?

CHALLENGE 1: DEALING WITH
LAGGING COMPILERS

Multimedia extensions pack multiple operations
into one word’s worth of work. This is often referred
to as subword execution (as explained in the sidebar).
Limited compiler support for targeting subword
instructions complicates the use of multimedia bench-
marks, even when suitable benchmarks exist. Today,
much digital signal processing code is handwritten in
assembly to ensure the highest possible efficiency,
because such code executes frequently.

Typically, compiler support for targeting ISA-
extended GPP subword instructions uses function inlin-
ing or macro calls in code segments that will benefit
from subword execution. This requires programmer
awareness of subword grouping opportunities and pro-
gramming at a lower level than is often desirable. The
compiler should be able to determine subword group-
ings on the basis of data parallelism and data depen-
dence analysis, but modern dependence analysis
techniques are not suited to having multiple quantities
in a single register. Ideally, if new techniques were used,
subword semantics could be made invisible to the pro-
grammer. Today, the reality and the ideal are far apart.

CHALLENGE 2: DEALING WITH
LAGGING LANGUAGES

Putting multimedia extensions into the same package
as a powerful GPP is not a solution to handling multi-
media workloads. It is not reasonable to users to either
program in assembly to access the instructions or to use
a high-level language as though it were assembly.

Although the new instructions provide considerable
potential to achieve high performance, they are not well
suited to a compiler. Subword operations typically sup-

Multimedia-processor media extensions to general-purpose processors
present new challenges to the compiler writer, language designer, and
microarchitect.

Thomas
M. Conte
North Carolina
State University

Pradeep
K. Dubey
IBM T.J.
Watson
Research Center

Matthew
D. Jennings
North Carolina
State University

Ruby B. Lee
Hewlett-
Packard
Laboratories

Alex Peleg
Intel Corp.

Salliah
Rathnam
Philips
TriMedia

Mike Schlansker
Hewlett-
Packard
Laboratories

Peter Song
MicroDesign
Resources

Andrew Wolfe
S3 Inc.

Th
em

e
Fe

at
ur

e

.

.

34 Computer

port saturating additions for applications such as video
and audio processing (that is, underflow results in zero,
overflow results in the maximum value).

Standard declarations of integers in high-level lan-
guages implicitly specify modulo addition. A mini-
mum requirement of a programmer is strict speci-
fication of data types to guide a compiler in selecting
packed data types of enough precision for variables
of small native data sizes. For example, in C the com-
mon declarations char, short, int, and long
long could be used to specify 8-, 16-, 32-, and 64-
bit native data sizes, respectively. But such use is non-
portable because one machine’s interpretation of the
size of int is different from another’s. Since there are
currently subtle differences between the GPP multi-

media extensions, this may not matter. However, if a
high-level language programmer has to make assump-
tions about the instruction semantics of the machine,
then the compiler is not doing its job well.

What is the long-term solution? Languages must
allow programmers to specify data types and over-
flow semantics at variable declaration time so that
multimedia applications can be coded correctly. In
many ways, subword quantities are similar to short
vector quantities in semantics, but the lack of new data
types limits the application of automated vectoriza-
tion methods already developed for scientific codes.

CHALLENGE 3: SORTING OUT WHAT’S REAL
It is tempting to argue that multimedia workloads

Instruction Set Architecture
Semantics for Media Processing

Today’s ISA extensions for media processing pro-
vide parallel execution of multimedia applications. To
accomplish this, they use packed data types and sub-
word execution. Figures A1 through A3 show sub-
word execution of common multimedia operations.
There are subword executions for arithmetic opera-
tions, data conversion, and rearrangement operations.

Subword versions of arithmetic operations—such
as multiply-add, multiply-accumulate, and shift-add—
include saturation options that clip results to the largest
and smallest representable numbers. Subword versions
of bitwise logical operations are also included when
integer counterparts cannot be leveraged for subword
execution, such as when integer registers and integer
functional units are not used.

Data reorganization operations rearrange data that
is not properly organized in memory in preparation
for subword execution. Figures A4 through A8 show
data rearrangement operations, a new feature of sub-
word execution. Full-word rearrangement operations
do not exist. Data rearrangement instructions are also
used for conversion between packed data types, such
as when increased precision is necessary for interme-
diate operations.

VIS extensions
The VIS extensions to UltraSparc are distinguished

from the others by including several special-purpose

Packed byte (eight 8-bit quantities)

quant7 quant6 quant5 quant4 quant3 quant2 quant1 quant0

Packed half-word (four 16-bit quantities)

quantity3 quantity2 quantity1 quantity0

Packed word (two 32-bit quantities)

quantity1 quantity0

Long-word (native data type, a 64-bit quantity)

quantity0

(1)

Subword instruction: MPYADD R3 ← R1, R2

a3R1 a2 a1 a0

b3 b2 b1 b0

x-+ x-+

R2

= =

(a2×b2)+(a3+b3) (a0×b0)+(a1×b1)R3

(3)

Subword instruction: ADD R3 ← R1, R2

a3R1 a2 a1 a0

b3 b2 b1 b0

+ +++

R2

= = = =

(a3+b3) (a1+b1)R3

(2)

(a2+b2) (a0+b0)

Subword instruction: PACK. W R3 ← R1, R2
a1 a0R1

b1 b0R2

truncated b1 truncated b0 truncated a1 truncated a0R3

(4)

Figure A. Examples of subword execution. (1) Packed data
types used to support subword execution; (2) subword arith-
metic example using add instruction; (3) subword arithmetic
example using multiply-add instruction; (4) data rearrange-
ment example using pack instruction on word data; (5) data
conversion example using unpack instruction on half-word
data, low version; (6) data rearrangement example using
mix instruction, high version; (7) data rearrangement exam-
ple using permute instruction; (8) data rearrangement exam-
ple using permute instruction on word.

.

.

are just a fad: Consider that applications for home sys-
tems now typically involve CD-ROM, video playback,
audio, image processing, modem functions, and navi-
gating the World Wide Web. Web content increasingly
consists of video and audio clips, images, 3D graphics,
and animation. High-performance video, such as digi-
tal videodisk playback (which consists of MPEG-2 and
Dolby AC-3 audio), is now possible and is expected to
command a significant portion of future workloads.

While office applications still consist of more tra-
ditional general-purpose applications such as word
processors and spreadsheets, multimedia content is
now found in presentations, and the Web is increas-
ingly being used to retrieve information and advertise
products. Mature desktop videoconferencing tech-

nology could revolutionize how business is conducted.
Also, the creation of multimedia content is now a sig-
nificant commercial endeavor in and of itself, whether
for product marketing, CD-ROM titles, or Holly-
wood-scale productions. All this indicates that multi-
media workloads are not a fad.

CHALLENGE 4: ADAPTING MICROARCHITECTURES
Although most GPP and MMP vendors have

jumped on the bandwagon and included subword-
style extensions in their processors, are they includ-
ing the right semantics? If so, what is the implication
for the microarchitecture?

To answer this, it is important to step back and look
at the motivating workloads. Perceived workloads and

December 1997 35

Subword instruction: UNPACK R3 ← R1

a3R1 a2 a1 a0

a1 a0R3

(5)

Subword instruction: PERMUTE R3 ← R1 (pattern 0 1 2 3)

a3R1 a2 a1 a0

a0R3 a1 a2 a3

(7)

Subword instruction: PERMUTE R3 ← R1 (pattern 2 3 0 0)

a3R1 a2 a1 a0

a2R3 a3 a0 a0

(8)

Subword instruction: MIX R3 ← R1, R2

a3R1 a2 a1 a0

a3 b3 a1 b1

b3 b2 b1 b0R2

R3

(6)

instructions with more complexity, including a
pixel distance instruction, block load and store
instructions, and a partial store instruction.

The pixel distance instruction computes the
absolute difference between corresponding
8-bit components in a pair of packed byte reg-
isters and then accumulates these values. This
instruction targets a predominant computation,
the sum of accumulated differences, used in
motion-estimation for MPEG video compres-
sion and in videoconferencing protocols.

Block load and store instructions transfer
blocks of data between memory and registers
without cache allocations. This allows the proces-
sor to move large amounts of data that are
touched only once without displacing useful data
from the caches. (Streaming multimedia algo-
rithms, with data sets larger than the caches, read
a block of data, perform a few operations, and
write the results.)

The partial store instruction provides for
masked store to memory with byte granularity.
A byte mask is used with the partial store
instruction; locations not selected by the mask
are not modified by the instruction. In some
instruction sets it is also possible to condition-
ally select which subword quantities are oper-
ated on.

MMP extensions
The MMP architectures (TM-1, MSP, and

Mpact) include special-purpose features more
typical of DSP architectures. These features
include hardwired video and audio ports and bit-
stream codecs, multimedia operations (motion-
estimation and (I-)DCT instructions, for ex-
ample), and DSP instructions (saturation, mini-
mum, and maximum).

In addition to subword execution, the MMP
architectures use very long instruction words
(as do TM-1 and Mpact) and vector instruc-
tions (as do MSP and Mpact) for concurrency.

.

36 Computer

benchmark performance are important in determining
which processor features to include in systems.
Benchmark performance is especially important to jus-
tify proposed architectural features. Perceived work-
loads, as opposed to actual workloads, are more
important in defining features for consumer multime-
dia systems, as is evident from system features (such as
full-motion video and sound boards) that have appeared
before widely recognized media benchmarks were devel-
oped. Intel proposed a media benchmark set in con-
junction with the release of their MMX technology, and
UCLA has also developed MediaBench, a more-general
benchmark set decoupled from any vendor’s instruction
semantics.10 Both of these benchmark sets are beginning
to fill the multimedia workload vacuum.

Using perceived benchmarks, it is possible to spec-
ulate about multimedia architectures. Current micro-
processor features, such as only 32- and 64-bit data
types (prior to subword extensions), large on-chip
caches, complex interlocking hardware, and complex
branch prediction hardware, have resulted from
emphasis on performance for integer benchmarks
(such as the SPECint92 and SPECint95 benchmarks).

Contrast those features with the following list of
attributes that generally characterize multimedia
applications:

• Small native data types (8 or 16 bits)
• Large data set sizes
• Large amounts of inherent data parallelism
• Computationally intensive features, but with

highly predictable branches
• Real-time processing requirements
• Multiple concurrent media streams (such as video

and audio)
• Large I/O bandwidth requirements

The first five are very different from the workloads
used to design today’s microprocessors. The remain-
ing items suggest the need for new features or features
not yet common to GPPs. Here are suggestions on
what these features might look like:

• Unaligned accesses to register files at 8-bit gran-
ularity to reduce the need for PACK and
UNPACK operations (see the sidebar for an
explanation of these operations).

• Streaming prefetch units and compiler-driven on-
chip memories to aid fetching large data sets.

• Compiler-assisted interlocking or other tech-
niques that reduce the burden on the interlock
hardware for certifying that a set of instructions
is indeed parallel.

• Support for enhanced real-time predictability of
execution, without also trading off high perfor-
mance.

This is only a partial list. As workloads such as
MediaBench are understood, this list is sure to grow.

In addition to microarchitectural features, the ISA
extensions are continuing to evolve (for example, HP
has released two generations of extensions, MAX-1
and MAX-2). Semantics for the MMPs include many
special-purpose features, while semantics for the ISA
extensions to GPPs are more general in scope (with
the notable exception of VIS).

The new MMP architectures have had the freedom
to include complex functionality because of fewer code
compatibility concerns. Extending an ISA for a GPP
requires more careful consideration and must focus on
minimizing cycle-time impacts and maximizing imple-
mentation simplicity, as such extensions are more per-
manent. Combining GPP and MMP into one package
will require a convergence on ISA semantics.

Improved benchmarking and experience with media
processing will determine the utility of the more special-
purpose features. The cost of implementation, in terms
of present and future cycle-time and chip-real-estate
impacts, needs to be determined for each possible feature.
Utility and cost of implementation should both be con-
sidered before permanently adding a feature to an ISA.

CHALLENGE 5: USING
PROGRAMMABLE MEDIA PROCESSING

The current solution to media processing is to design
an ASIC for the application. Programmable media pro-
cessing (via ISA extensions or embedded MMPs) is
expected to supplant this special-purpose hardware for
several reasons: First, it is less expensive. Programmable
processors for media processing can replace several
ASICs. To do so, the performance of the programma-
ble alternative will need to be comparable to or exceed
the combined performance of the application-specific
hardware it replaces. Second, programmable media
processing offers solution generality. As multimedia
algorithms adapt, features of a multimedia system that
uses a programmable solution may be updated with
software.

A single-chip solution for combining GPP and MMP
technologies follows the historical precedent of merg-
ing floating-point execution hardware with GPPs. In the
case of floating-point execution, the paradigm shifted
from special-purpose hardware to programmable float-
ing-point coprocessors, and finally to floating-point
functional units on GPPs. With media processing, it
remains to be seen if GPPs will include multimedia exe-
cution units or if MMPs will incorporate improved gen-
eral-purpose capability. Much depends on the amount
of multimedia content in future workloads.

Target markets will also determine where empha-
sis should be. Consumer products, such as video
phones, WebTVs, and “edutainment” devices will
emphasize media processing over general-purpose fea-

It is tempting
to argue that
multimedia
workloads
are just a fad.

..

tures. MMP architectures that include GPP features
(TM-1 and MSP today) are suitable as stand-alone
devices for these products. Multimedia computer sys-
tems will likely evolve from GPPs, unless shifts in
workload to include multimedia content overwhelm
traditional general-purpose applications.

MMPs are specialized to target multimedia appli-
cations, but some also include general-purpose com-
puting functionality. Today’s ISA-extended GPP and
MMP technologies are complementary for multime-
dia computer systems. Currently, MMPs implement
system features not found in GPPs, such as hardwired
video and audio ports and bitstream encoders and
decoders. MMPs also enhance performance by pro-
viding more media processing and I/O bandwidth
capability. MMPs are now being used as coprocessors,
providing media processing capability not yet possible
on ISA-extended GPPs. In this way, MMPs today are
being used for product differentiation, such as for high-
performance graphics or digital video disk decode.

M ultimedia workloads and GPP and MMP
extensions are here to stay. However, com-
piler designers, language designers and

microarchitects face large, difficult problems. Some
of these problems will be solved by the industry as
the pull of the new workloads causes investment and
risk taking. Others, such as automatic extraction of
subword parallelism by the compiler, likely will be
developed in universities and transferred to industry.
Universities need to do more of this. The ultimate
solution to the problems presented here will be a col-
laborative effort between universities and industry—
a familiar success story to processor designers. ❖

References
1. R.B. Lee, “Subword Parallelism with MAX-2,” IEEE

Micro, July/Aug. 1996, pp. 51–59.
2. A. Peleg and U. Weiser, “MMX Technology Extension to the

Intel Architecture,” IEEE Micro, July/Aug. 1996, pp. 42–50.
3. A. Peleg, S. Wilkie, and U. Weiser, “Intel MMX for Mul-

timedia PCs,” Comm. ACM, Jan. 1997, pp. 25–38.
4. M. Tremblay et al., “VIS Speeds New Media Process-

ing,” IEEE Micro, July/Aug. 1996, pp. 10–20.
5. “MIPS Digital Media Extension,” Instruction Set Archi-

tecture Specification, http://www.mips.com/MDMXspec.
ps (current Oct. 21, 1997).

6. G.A. Slavenburg, S. Rathnam, and H. Dijkstra, “The Tri-
media TM-1 PCI VLIW Media Processor,” Proc. Hot Chips
VIII Symp., IEEE CS Press, Los Alamitos, Calif., 1996.

7. L.T. Nguyen et al., “MSP: Multi-Media Signal Proces-
sor,” Proc. Hot Chips VIII Symp., IEEE CS Press, Los
Alamitos, Calif., 1996.

8. P. Kalapathy, “Hardware/Software Interactions on the
Mpact,” IEEE Micro, Mar./Apr. 1997, pp. 20–26.

9. C. Lee, M. Potkonjak, and W. Mangione-Smith, “Media-
Bench: A Tool for Evaluating Multimedia and Communi-
cations Systems,” Proc. IEEE/ACM Int’l Symp. Micro-
architecture (MICRO-30), IEEE Press, New York, 1997.

10. R.B. Lee and M.D. Smith, “Media Processing: A New
Design Target,” IEEE Micro, July/Aug. 1996, pp. 6–9.

Thomas M. Conte is an assistant professor of electri-
cal and computer engineering at North Carolina State
University. He received an MS and a PhD in electrical
engineering from the University of Illinois, Urbana-
Champaign. He is a member of IEEE, ACM, Tau Beta
Pi, and Eta Kappa Nu.

Pradeep K. Dubey is a research staff member at the
IBM T.J. Watson Research Center. He received a BS
in electronics and communication engineering from
Birla Institute of Technology, India; an MS in electri-
cal engineering from the University of Massachusetts,
Amherst; and a PhD in electrical engineering from
Purdue University. He is a senior member of IEEE.

Matthew D. Jennings is currently pursuing a PhD in
computer engineering at North Carolina State Uni-
versity. He received a BS in electrical engineering from
the University of Minnesota and an MS in computer
engineering from North Carolina State University.

Ruby B. Lee is chief architect for multimedia archi-
tecture and senior architect for processors and sys-
tems at Hewlett-Packard Laboratories. She received
a BA from Cornell University, and an MS in computer
science and a PhD in electrical engineering from Stan-
ford University. She is a member of IEEE, ACM, Phi
Beta Kappa, and Alpha Lambda Delta.

Alex Peleg is a senior computer architect at the Intel
Israel Design Center, where he leads the team of archi-
tects that defined MMX. Peleg received a BS in com-
puter science and an MS in electrical engineering from
Technion, the Israel Institute of Technology. He is a
member of IEEE and ACM

Mike Schlansker’s biography appears on p. 69.

Peter Song is a senior analyst at MicroDesign Resources
and a senior editor of Microprocessor Report.

Andrew Wolfe is director of technology and an S3 fel-
low at S3 Inc., in Santa Clara, Calif. Wolfe received a
PhD in computer engineering from Carnegie Mellon
University in 1991.

Contact Conte at the Department of Electrical and
Computer Engineering, North Carolina State Univer-
sity, Raleigh, NC 27695-7911; conte@eos.ncsu.edu.

December 1997 37

.

