

 Introduction
 Contech’s Task Graph Representation
 Parallel Program Instrumentation
 (Break)
 Analysis and Usage of a Contech Task Graph
 Hands-on Exercises

2

 Compiler-based framework to generate task graphs

 Example analysis (i.e., backends) of Task Graphs

 Data Race Detection

 Cache modeling

 Lock contention

3

 Model memory space and use
edges to find happens-before

 Critical Sections

 Syncs around task 1:20

 Syncs around task 12:15

 1:20 -> 12:25 is not a race
 12:13 -> 1:22 is a race

4

 Similar to Helgrind, Eraser, FastTrack, IFRit, LightRace, PACER, et
cetera

 Bodytrack

 91037 races observed

 Number of BB's containing races: 16

▪ Conflicting access address: 7fff936f3be0(Idx:0) in (Context:Task) -- (0:32) and (11:0)

▪ 16107, mainPthreads(std::string, int, int, int, int, int, bool), main.bc:43

▪ 9941, threads::thread_entry(void*), Thread.bc:32

5

 Supply a cache simulator with a sequence of read and write
addresses

 Change size, associativity, replacement

 Task graph also has basic blocks and memory allocations

6

7

Miss Rate

LOG2 Cache Size

 256KB shared cache (35% miss rate)
 Basic block 26 – 98.5% of all misses

▪ bs_thread(void*) @ blackscholes.m4.bc:376
▪ Each thread has a block start < i < end to process
▪ price = BlkSchlsEqEuroNoDiv(sptprice[i], strike[i], rate[i],
volatility[i], otime[i], otype[i], 0);

 Allocation at block 67 of 327936B (99.8% of misses)
buffer = (fptype *) malloc(5 * numOptions * sizeof(fptype) + PAD);

sptprice = (fptype *) (((unsigned long long)buffer + PAD) &
~(LINESIZE - 1));

strike = sptprice + numOptions;

rate = strike + numOptions;

volatility = rate + numOptions;

otime = volatility + numOptions;

8

 Track the synchronization in a program

 When do timestamps overlap for [Release] -> [Acquire]

 What program points generate the most contention?

 Almost 6 million lock acquires

 Less than 600 are contended

 Contention is doubled on the second of a pair of locks

Contented
Acquires Function Name

File and Line
Number

97 ComputeDensitiesMT(int) pthreads.bc:732
224 ComputeDensitiesMT(int) pthreads.bc:741
88 ComputeForcesMT(int) pthreads.bc:834

173 ComputeForcesMT(int) pthreads.bc:843

Parallelism

Code
Executed

Memory
Accesses

11

Data Races

Lock Contention

Cache Model

Task Graphs

 C++11-based API for analysis
 Three major classes

 Task Graph – Contains everything

 Task Graph Info – Debugging-like information

 Task – Actual contents

 Instantiates from a task graph file

 Reads in the Task Graph Info

 Parses the “table of contents”

▪ Provides the location of every task in the file

▪ Provides a breadth-first traversal of the graph

 Sequential and random access to tasks

 Static Information about the Task Graph’s program

 Map of basic block ID to information about that block

▪ Filename, line number

▪ Parent function

▪ Count of IR operations, memory operations, etc

 (Future work) Type information, Function types, etc

 All of the data associated with this node in the graph

 Identifiers

 Task predecessors and successors

 Type (i.e., partition)

 Timestamps

 Basic block and memory actions

 Identifiers

 TaskId = ContextId | SeqId

 Task relations are expressed using IDs, not pointers

 Actions

 Basic block – ID

 Memory operation – Reads and Writes

 Memory action – Ops + malloc, free, bulk accesses (memcpy)

 Cache simulator takes a trace of memory accesses
 Iterate through the tasks to generate the sequence of accesses

auto memOps = currentTask->getMemOps();

for (auto itMemOp = memOps.begin(),
etMemOp = memOps.end();

itMemOp != etMemOp; ++itMemOp)
{

auto MemoryAction ma = *itMemOp;

char numOfBytes = (0x1 << ma.pow_size);
uint64_t address = ma.addr;

// invoke cache simulator

 Simple backends can extend the Backend class
 Iterates through the tasks, passing each to the backend

▪ void updateBackend(contech::Task*);

 When all tasks have been parsed, output the analysis to a file
▪ void completeBackend(FILE*, contech::TaskGraphInfo*);

BackendMemUse* bmu = new BackendMemUse();
SimpleBackendWrapper* sbw = new SimpleBackendWrapper(argv[1], bmu);

sbw->runBackend();
sbw->completeRun(stdout);

delete sbw;
delete bmu;

 How to store an address for non-loads and stores
 Locks are identified by address

 Malloc returns an address

 Sync tasks contain a single memory operation

 Mallocs are followed by a memory operations
 Action type malloc contains the return address

 Action type size contains the size in the address field

