

Introduction

Contech’s Task Graph Representation
Parallel Program Instrumentation

(Break)

Analysis and Usage of a Contech Task Graph
Hands-on Exercises

Compiler-based framework to generate task graphs

Example analysis (i.e., backends) of Task Graphs
Data Race Detection
Cache modeling
Lock contention

Model memory space and use v

edges to find happens-before .(
Critical Sections S <-~'§”>J,.-'
Syncs around task 1:20 \ | *f
Syncs around task 12:15 N
N LI
< 15{”‘ . { HIE)
1:20 -> 12:25 is not a race \/

12:13 ->1:22 is arace \

Similar to Helgrind, Eraser, FastTrack, IFRit, LightRace, PACER, et
cetera

Bodytrack
91037 races observed

Number of BB's containing races: 16
Conflicting access address: 7fff936f3be0(ldx:0) in (Context:Task) -- (0:32) and (11:0)

16107, mainPthreads(std::string, int, int, int, int, int, bool), main.bc:43
9941, threads::thread entry(void*), Thread.bc:32

Supply a cache simulator with a sequence of read and write
addresses

Change size, associativity, replacement

Task graph also has basic blocks and memory allocations

Miss Rate

40

35

30

25

20

15

10

Disckscholes

16 18 20
LOG2 Cache Size

256KB shared cache (35% miss rate)
Basic block 26 — 98.5% of all misses

bs_thread(void*) @ blackscholes.m4.bc:376
Each thread has a block start < i < end to process

price = BlkSchlsEgEuroNoDiv(sptprice[i], strike[i], rate[i],
volatility[i], otime[i], otype[1], 0);

Allocation at block 67 of 327936B (99.8% of misses)
buffer = (fptype *) malloc (5 * numOptions * sizeof (fptype) + PAD);

sptprice = (fptype *) (((unsigned long long)buffer + PAD) &
~(LINESIZE - 1));

strike = sptprice + numOptions;
rate = strike + numOptions;

volatility = rate + numOptions;
otime = volatility + numOptions;

Track the synchronization in a program

When do timestamps overlap for [Release] -> [Acquire]
What program points generate the most contention?

Almost 6 million lock acquires

Less than 600 are contended

Contention is doubled on the second of a pair of locks

Contented File and Line
Acquires Function Name Number
97 ComputeDensitiesMT(int) pthreads.bc:732
224 ComputeDensitiesMT(int) pthreads.bc:741
88 ComputeForcesMT(int) pthreads.bc:834
173 ComputeForcesMT(int) pthreads.bc:843

Pa ra I Ielism Lock Contention

Data Races /

Task Graphs

Memory , Code
Accesses Executed

Cache Model "

C++11-based API for analysis
Three major classes

Tas
Tas
Tas

K Graph — Contains everything
< Graph Info — Debugging-like information

K — Actual contents

Instantiates from a task graph file
Reads in the Task Graph Info
Parses the “table of contents”

Provides the location of every task in the file
Provides a breadth-first traversal of the graph

Sequential and random access to tasks

Static Information about the Task Graph’s program

Map of basic block ID to information about that block
Filename, line number
Parent function

Count of IR operations, memory operations, etc

(Future work) Type information, Function types, etc

All of the data associated with this node in the graph
ldentifiers
Task predecessors and successors
Type (i.e., partition)
Timestamps
Basic block and memory actions

|dentifiers
Taskld = Contextld | Seqld
Task relations are expressed using IDs, not pointers

Actions
Basic block = ID
Memory operation — Reads and Writes
Memory action — Ops + malloc, free, bulk accesses (memcpy)

Cache simulator takes a trace of memory accesses
Iterate through the tasks to generate the sequence of accesses

auto memOps = currentTask->getMemOps () ;

for (auto 1tMemOp =
etMemOp =
1tMemOp !=

auto MemoryAction

char numOfBytes =
uinto4 t address

memOps.begin (),
memOps.end () ;
etMemOp; ++itMemOp)

ma = *1tMemOp;

(0x1 << ma.pow size);
ma .addr;

// invoke cache simulator

Simple backends can extend the Backend class
Iterates through the tasks, passing each to the backend
void updateBackend(contech::Task*);

When all tasks have been parsed, output the analysis to a file
void completeBackend(FILE*, contech::TaskGraphlnfo*);

BackendMemUse* bmu = new BackendMemUse () ;
SimpleBackendWrapper* sbw = new SimpleBackendWrapper (argv([1l],

sbw->runBackend () ;
sbw->completeRun (stdout) ;

delete sbw;
delete bmu;

bmu) ;

How to store an address for non-loads and stores
Locks are identified by address
Malloc returns an address

Sync tasks contain a single memory operation

Mallocs are followed by a memory operations
Action type malloc contains the return address
Action type size contains the size in the address field

